Satellite remote sensing of Above-Ground Biomass (AGB) on Agroforestry Plots Enhancing Income Streams through Carbon Credits

Scan for more Info

Introduction

- Smallholder agriculture essential for food security and income generation
- Field Level Monitoring of Above-Ground biomass on plot-level can be expensive
 Miombo 500 Project
- Implemented by LevasFlor Foundation,
 NGO in Mozambique
- GOAL: Preserve and develop 500.000
 hectares of Miombo Forest by maximizing its sustainable economic value

Carbon Credit Project

- Carbon Storage as an ecosystem service → Product of a sustainably managed landscape
- AGB on Agroforestry and Community Forest plots shall be measured individually
- Enabling direct money transfers to a smallholder farmer/community

• **STRATEGY:** Establish Carbon Credit Project for Agroforestry Program as an opportunity for smallholder farmers to diversify

Methods

- Narrative Review; Literature search Years: 2003-2023 in Web of Science
- Official mission data from space agencies
- Comparison for application of plot-level AGB Measurements (check with AGB field data)

 Research Question:
 Which remote sensing methods can be useful for measurements of Above Ground Biomass on plot level? Figure 1: Map of Miombo Ecosystem in southern Africa. Pinpointing project Location

Challenges & Critics

- Carbon pools not included:
 1. Below-Ground Biomass
- 2. Soil Organic Carbon
- 3. Necromass (Deadwood)

Conclusion

- Combined optical data and LiDAR date
 → most accurate results at plot level
- Remote sensing methods are available for AGB plot estimates
- Farmers can diversify income streams through carbon credit programs

Sensors	RMSE
Optical (Landsat 8)	66%
LIDAR (ICESAT2)	50%
Combination of Optical and LiDAR (Light Detection and Ranging)	49%

Results

Mission	Sensor	Spatial Resolution	Additional Resolutions	Revisit time
EnMAP	Hyperspectral	30m		27 days
HISUI	Hyperspectral	20x30m		n.a.
			Wall-to-wall Canopy	
MOLI	Lidar	5m	Hight & AGB	16 days
			3m global vegetation	
ICESAT2	Lidar	1000m	hight	91 days
GEDI	Lidar	25m	25m AGB	n.a.
SAOCOM 1A & 1B	SAR	7 - 100 m		8 days with both satellites
ALOS-2 PALSAR-2	SAR	10m		14 days
Tandem-L	SAR	30m	50m AGB, 30m Canopy hight, AG	16 days
ALOS-4 PALSAR-3	SAR	1-3m		14 days
NISAR	SAR	7 m	annual AGB at 1 ha	12 days
BIOMASS	SAR (Syntetic Aperture Radar)	4ha	200m AGB and Canopy Hight	once every year
SENTINAL 2 A & B	Optical	10m		5 days
Landsat 7	Optical	15m	panchromatic	16 days

- Optical multispectral sensors (Landsat and Sentinel-2) provide valuable data
- Higher-resolution optical data from commercial constellations (RapidEye and Dove) but higher costs
- Synthetic Aperture Radar (ALOS PALSAR and Sentinel-1) permit AGB estimation in areas with persistent cloud cover
- LiDAR sensors, including ICESat-2 and GEDI, offer detailed information on the vertical distribution → enhanced precision
- Future missions: NASA's NISAR and ESA's BIOMASS, hold promise for improved SAR and LiDAR data

Landsat 8	Optical	30m	8 days with Landsat 9		
Landsat 9	Optical	15m	8 days with Landsat 8		
RapidEye	Optical	5m	1-5 days		
SkySat	Optical	0,9m	serveral times per day		
Dove	Optical	3-5m	serveral times per day		
Figure 2: Non-exhaustive List of current and future earth observation missions for Above Ground					

Biomass mapping

Berner Fachhochschule

School of Agricultural, Forest and Food Sciences HAFL

Master of Life Sciences – Forest Science Major: International Management of Forest Industries Author: Johannes Raher, johannes.raher@students.bfh.ch Supervisor: Lindsey Norgrove Switzerland, Zollikofen, September 2023

Tropentag 2021