Weather and climate information use and needs for rice production, Cross River State, Nigeria

Hilda Chia Eta

University of Calabar, Dept. of agricultural extension and rural sociology, Nigeria

Introduction

- Agriculture in developing countries is climate dependent.
- Climate and weather forecasts have the potential to assist small scale farmers

Methods

- The study employed a survey design.
- Multistage sampling procedure was used to select 125 small scale rice farmers in two rice producing agricultural zones of the state (Ogoja, and Ikom).

make informed decisions that will boost the quantity and quality of crops produced.

 However, climate/weather information disseminated are often in forms that are ill-suited for use by small scale farmers.

Results

- Major types of weather/climate information used for rice production were: onset/length of rainy season (86.4 %), sunshine duration (84.8 %), end of rainy season (83.2 %), daily temperatures (81.6 %), and wind direction (80.8 %).
- Information that aided farmers' decision making were: information on onset and end of rainy season (x=4.34), forecasts on extreme weather events like floods

Swamp rice field in Ikom Agricultural zone

Land preparation for upland rice cultivation

Conclusion

 Rice farmers are exposed to different weather and climate information that aid farmers' decision making for rice

Binary logistic regression tested the relationship between rice farmers' selected socio-economic characteristics and use of weather/climate information

WIND SPEED FOR TIMELY SPRAYING	84.8
REDUCTING NEGATIVE CONSEQUENCES	92.8
HOW TO COPE WITH RISK AND UNCERTAINTY	95.2
INFORMATION ON WEEDING	76
MICRO-CLIMATE MANAGEMENT	78.4
INFORMATION ON LAND PREPARATION TIMING	75.2
CROP VARIETY AND SELECTION	84
INFORMATION ON CROP PLANTING	80.8
PROPER HARVESTING TIME	87.2
PESTS EXPECTED PER SEASON/PESTICIDES TO	78.4
EARLY WARNING SIGNS ON DROUGHT	92.8
SOIL NUTRIENTS MANAGEMENT	92.8
APPROPRIATE TIME FOR SPRAYING CROP	85.6
WATER MANAGEMENT DURING DRY SEASON	92.8

and/or droughts (\bar{x} =4.33) and chances of wet spells (\bar{x} = 4.14). (Table 1)

Table 1: Weather/climate information thataided decision making in riceproduction

Weather/climate information	x	SD	Rank
Information on onset and			
end of rainy season	4.3	4 0.14	1st
Total Rainfall Forecast			
and its Intra-seasonal			
Distribution	3.9	8 0.1	4th
Humidity	3.5	6 0.09	7th
Forecasts on extreme			
weather events such as			
floods and/or droughts	4.3	3 0.10	2nd
Sky Cover	30	9 0 09	10th

production

- However, information available is at variance with what farmers actual need.
- Also Access to and use of information provided is hampered by several constraints.
- Climate information service providers should target farmers' information needs
- Farmers' major weather information needs were: information on how to cope with risk and uncertainty (95.2%), information on water management during dry season (92.8%) and soil nutrient management information (92.8%) (Fig.1).

• Inadequate access to climate information $(\bar{x}=4.43)$, inadequate money to buy ICT tools like radio, television, cell phones, batteries, $(\bar{x}=4.36)$, and absence/unreliable power supply $(\bar{x}=4.34)$ were 3 key constraints identified (Table 2).

Fig 1: Rice farmers' weather information needs

Table 2: Constraints to use of weather/climate)
--	---

information

Constraints	x	Rank
Inadequate access to climate information	4.43	1st
Forecasts reach farmers too late	4.02	9th
communication of favourable forecasts		
vhile neglecting adverse conditions	4.26	7th
ncorrect predictions of events	3.22	16th
nadequate weather/climate parameters	4.02	9th
Geographical areas covered are too large		
o be locally relevant	3.26	15th
nformation not communicated in local		
anguage	4.34	4th
Excessive reliance on scientific		
erms/graphs	3.08	17th
Poor literacy or educational levels	4.3	6th
Previous negative experiences with		
predictive information	3.92	11th
nformation conflicts traditional		
oredications	3.70	14th
nadequate coverage of LGAs by signals	3.91	12th
nadequate money to buy ICT tools	4.36	3rd
Absence/unreliable power supply	4.34	4th
Conflicts within/across communities		
nindering circulation of information	3.72	13th
_ack of money or access to credit	4.43	1st

Soil Temperature	3.42 0.09 8th
Wind diraction foracasts	2 8 8 0 1 5th
	J.00 U.I JIII
Wind speed	3.43 0.09 8th
Chances of Wet Spells	4.14 0.10 3rd
Daily Temperature	
forecasts	3.70 0.1 6th

Binary logistic regression analysis showed that educational level (p=0.033) and farming experience (p=0.043) had significant positive effects on the use of weather and climate information at p=0.05.

Lack of trust in scientific information 4.16 8th

Tropentag, 20-22 September 2023, hybrid conference "Competing pathways for equitable food systems transformation: Trade-offs and synergies"