

GRK 2654 Sustainable Food Systems

Farmers resilience using a food system approach: Conceptualization and empirical application

M. Squarcina, J. Hänsch, F. M. Montoya Cepeda, M. S. Pallauf, B. Paz, J. Stehl, J. Wehner, M. Wollni University of Göttingen

Introduction		Methodology		
	Definition	Unit of analysis: farming households		
	Measures of development resilience:	3 Levels: household, community, plot		
	• Ex-ante capacity \rightarrow RIMA-II by FAO (2016)	> 3 Outcomes:		
	 Normative condition (Barrett and Constas (2014); Cissé and Barrett (2018)) 	 Economic profitability: per capita income Environmental sustainability: soil workability 		

Return to equilibrium

Literature gaps

- Low predictive accuracy (Upton et al., 2022)
- No external validity ((Barrett et al., 2021)
- Only focus on one outcome per time

Aim

To propose an integrative measure of resilience, using a food system approach, that can be empirically tested.

Contributions

- 1. Integration of the two approaches existing in the literature into a unique conceptual framework
- 2. Food system perspective
- 3. Empirically testable model
- 4. Flexibility and adaptability

Highlights

Adequate nutrition: healthy dietary diversity score

Model

1. LASSO regression \rightarrow to select variables

- 2 combined approaches: resilience as capacity + normative condition
- Empirically testable
- Use of Machine Learning
- 3 dimensions of food system: economic, environmental, nutrition
- Final dataset: 16,233 observations & 337 variables

Data

Country	Survey		Years	Panel sample size
Malawi	Integrated HH Panel Survey	2010	, 2013, 2016	1,344
Tanzania	National Panel Survey	2008	, 2010, 2012	2,651
Nigeria	General HH Survey	2012	, 2015, 2018	1,416
 Selection (Panel d 3+ roun Harmor HH cool 	Selection Criteria: Panel data 3+ rounds of data Harmonized set of variables HH coordinates		 Data sources: LSMS data by WB RuLIS indicators by FAO Georeferenced data 	

- Regularization term for LASSO on the environmental outcome
- 1. Computation of $P(y_{t+1} \ge Treshold | y_t, X_{t+1}) \rightarrow$ based on Cissé and Barrett (2018)
- 2. Computation of resilience measure → using PCA and MIMCS (following RIMA-II)

Next steps

Finalization of dataset:
Include

- Analysis:Run again LASSO
- Other countries (Uganda, Burkina Faso, Ethiopia)
- Other rounds of data
- Other variables:
 - Distances
 - Market Prices
 - Governance indicators
 - ACLED data on conflicts
- Compute Probability (Step 2)
- Compute Resilience (Step 3)
- > Validation:
- Check predictability
- Check over different shocks

Contact information

Margherita Squarcina, Post-doctoral Researcher

RTG 2654 "Sustainable Food Systems", Department of Agricultural Economics and Rural Development - Georg-August-University Göttingen

Email: margherita.squarcina@uni-goettingen.de | Address: Heinrich-Düker-Weg 12, 37073 Göttingen