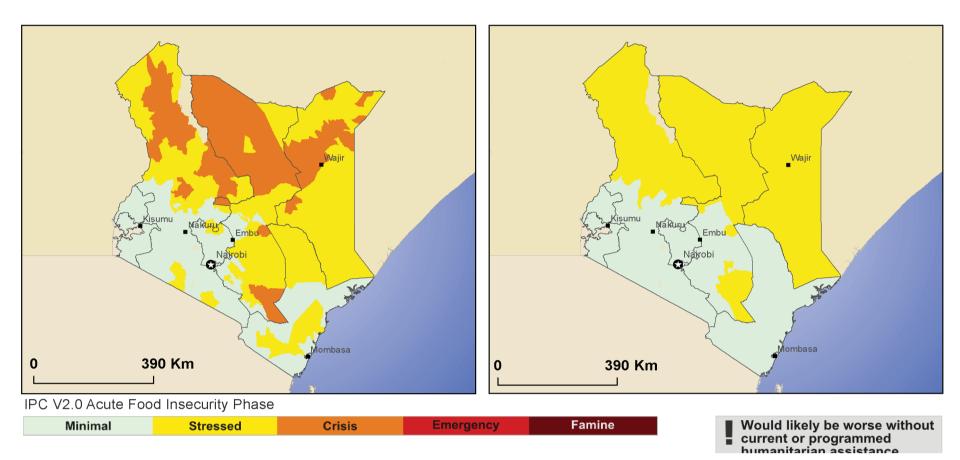


CHEMICAL CHARACTERISTICS AND ACCEPTABILITY OF CEREAL-CRICKET COMPOSITE PORRIDGE.


Danstone Aboge, Mary Orinda & Silvenus Konyole

1. INTRODUCTION

Challenge:

Food insecurity and Malnutrition

Contributing Challenges

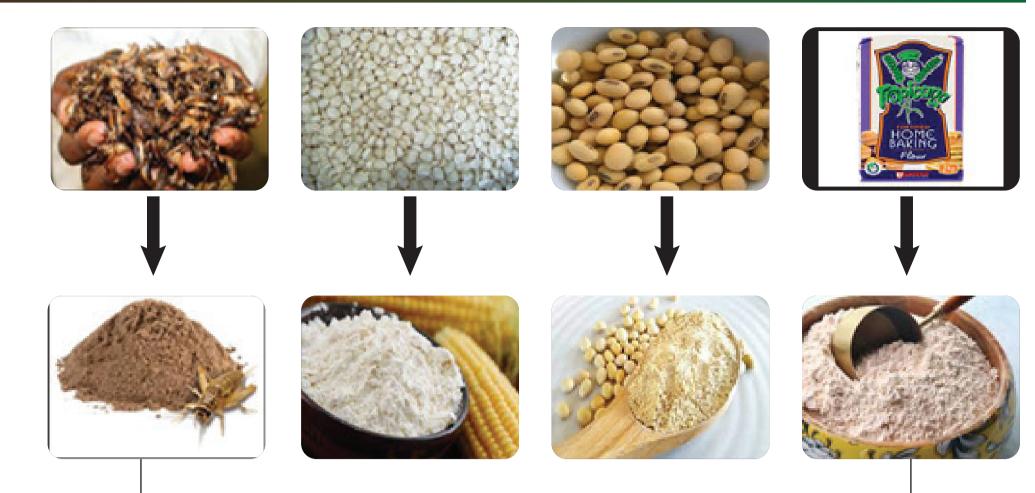
- Lack of dietary diversity
- Animal protein ex-pensive & unaffordable
- Complementary foods are of low nutritional density.
- Complementary foods are characterized by poor physico□chemical properties.

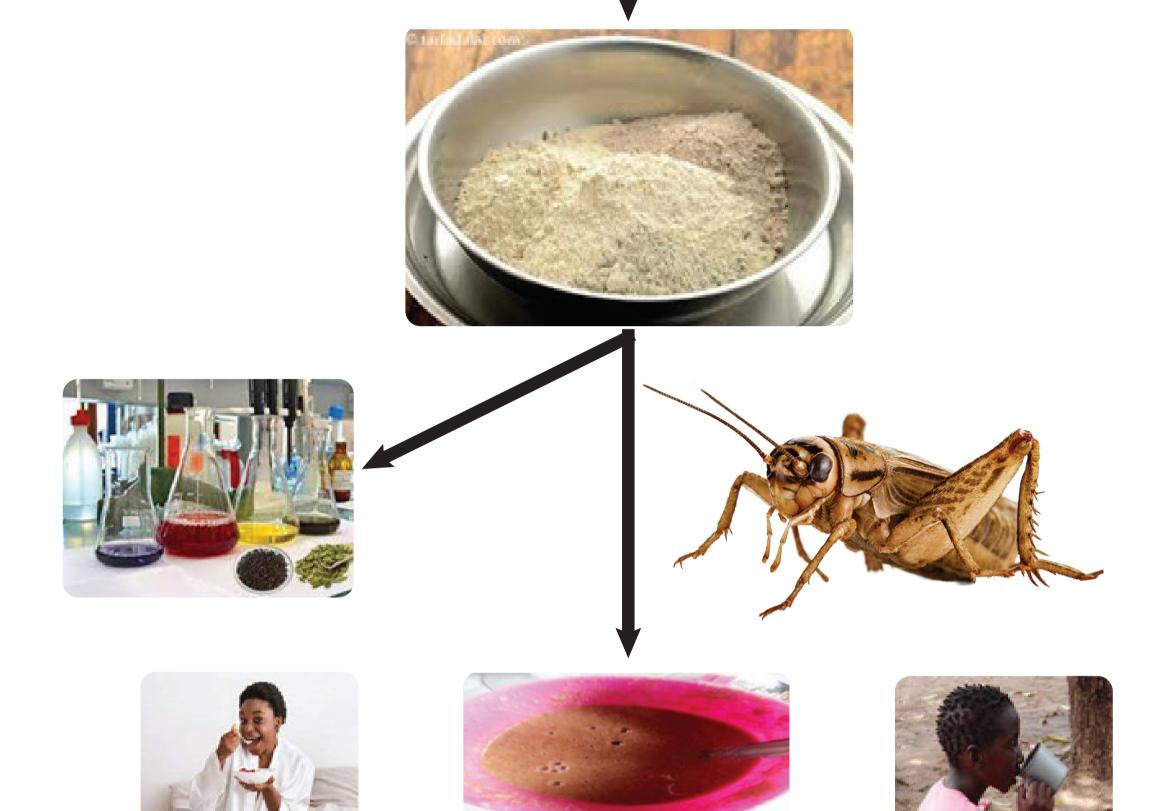
Goal

To generate knowledge on the use of crickets as an alternative source of valuable protein in complementary feeding for improved child nutrition.

Objectives:

- To determine effects of substituting soy flour with cricket flour on the nutritional composition, in vitroprotein digestibility and functional properties of cricket cereal composite complementary porridge.
- To assess sensory evaluation and con sumer acceptability of cereal-cricket composite porridge.

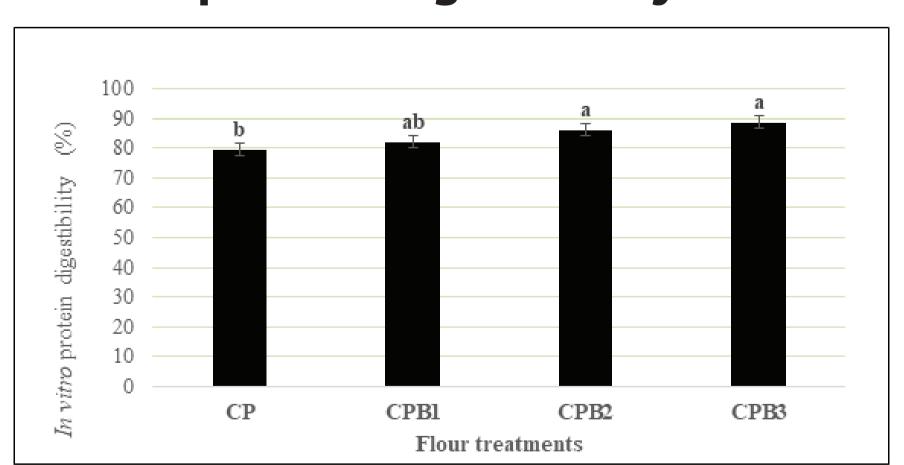

Why Crickets?


- Good source of quality protein (60-70%)
- Good source of fats, fibre and minerals
- Cheap and easy to rear in masses
- Low carbon foot print
- Under-utilized food resource

Why Replacing Soybean?

- Low protein content (40%)
 compared to crickets
- Protein is of low digestibility
- Has a lot of anti-nutrients
- Difficult and expensive to produce
- It's production contributes to land
- degradation and biodiversity loss

2. MATERIALS AND METHODS


NUTRITIONAL COMPOSITION OF THE FLOURS Table 1. Proximate composition of the flours

Flour	Moisture	Ash	Fibre	Protein	Fat	Carbohydrate
СР	9.45±0.15°	1.78±0.32ª	4.63±0.18 ^a	17.58±0.23°	9.87±0.75 °	56.69±0.55°
CPB1	9.30 ±0.10 ab	1.67 ±0.16 ^a	5.41±0.56 ^b	19.18±0.28 ^b	11.04±0.70 ^b	52.77±0.02 ^b
CPB2	9.63 ±0.13°	2.13 ±3.90 ^a	7.45±0.28°	21.04±0.19	14.02±0.35°	45.73 ±0.55 ^c
CPB3	9.25 ±0.01 ^b	1.72± 0.45 a	9.06± 0.12 ^d	22.87±0.45 ^d	15.61±0.3 ^d	41.49 ±0.51 ^d
p-value	0.0197	0.8536	0.0001	0.0003	0.0002	0.0001

Table 2: Mineral contents of the flours

Flour	K	Ca	Na	Fe	P	Mg	Zn
СР	177.53±0.09 ^a	87.58 ± 0.47^{a}	82.22±0.73 ^a	6.05 ± 0.14^{a}	128.97±1.09 ^a	31.63±0.38 ^a	5.84 ± 0.79^{a}
CPB1	188.28±0.62 ^b	83.19±0.45 ^b	92.35±0.45 ^b	5.43±0.08 ^a	125.44±1.24 ^b		6.34±0.05 ^a
CPB2	194.45±0.71°	78.35±0.23°	110.55±0.12°	4.15±0.15 ^b	121.50±1.07°	41.70±1.87°	8.21±0.72 ^b
CPB3	196.97±0.90	75.90 ± 0.52^{d}	119.05±0.34 ^d	3.12±0.1°	118.42±1.13 ^d	46.07±0.12 ^d	9.44±0.12°
p- value	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001

In vitro protein digestibility of the flours

Functional properties of the flours

	Viscosity (Centipoises)		Bulk density(g/cm ³)	Water Absorption capacity(ml/100g)	Protein water solubility (%)
	Cold (25°C)	Warm(45°C)			_
СР	1650.0±0.21 ^a	1420.0±0.16 ^a	0.71 ± 0.02^{a}	199.87±0.32 ^b	49.86±1.23 ^a
CPB1	1570.0 ± 0.40^{b}	1250.0 ± 0.16^{b}	0.68 ± 0.01^{ab}	289.15±1.78 ^{ab}	43.48±1.96 ^{ab}
CPB2	1440.0±0.81°	950.0±0.71°	0.64 ± 0.12^{b}	225.17±1.92 ^{ac}	27.06±0.32 ^{bc}
CPB3	1250.0 ± 0.11^{d}	960.0 ± 0.22^{c}	0.60 ± 1.23^{c}	114.87 ± 1.02^{c}	20.20±0.95°
P-value	0.0003	0.005	< 0.0001	0.0006	0.0032

Evaluation of the porridges

	Porridge	Colour	Texture	Aroma	Taste	Mouth-	Overall
	flour					feel	acceptability
	CP	8.08±1.47 ^a	7.60 ± 1.67^{a}	8.25±1.28 ^a	8.35±0.74 ^a	7.65 ± 1.70^{a}	8.5±0.72 ^a
	CPB1	6.98 ± 1.14^{b}	6.88 ± 1.52^{a}	6.98 ± 1.42^{b}	6.85 ± 1.48^{b}	6.90 ± 1.48^{a}	7.08 ± 0.94^{b}
	CPB2	5.83 ± 1.72^{c}	5.4 ± 1.95^{b}	4.85±1.64°	$5.05\pm1.90^{\circ}$	5.08 ± 1.97^{b}	5.75±1.53°
	CDDA	405.0050	0.05.0100	2 42 1 00d	0 65 0 10d	2 40 4 0 000	2 (0 . 1 0 . 1

4. CONCLUSION

- Addition of cricket flour improved protein, fats, fibre, Na, K, P & Zn
- It also improves protein digestibility of the flours.
- It reduced viscosity and bulk density of cricket-based porridges making them easy for infant feeding
- Cricket-based porridges with 25% and 50% cricket flour inclusion was the most accepted
- Acceptability reduced with addition of more cricket flour

5. RECOMMENDATION

- Need to improve sensory properties of the porridges to improve acceptability
- More sensitization and awareness creation to improve acceptability

ACKNOWLEDGEMENT

- Jaramogi Oginga Odinga University of Science and Technology (JOOUST)
- African Centre of Excellence for Sustainable use of insects as food and feed (ACEII) INSEFOODS
- WeihenStephan
- -Triesdorf University of Applied Sciences(Germany)
- Ghent University(
 Belgium)

