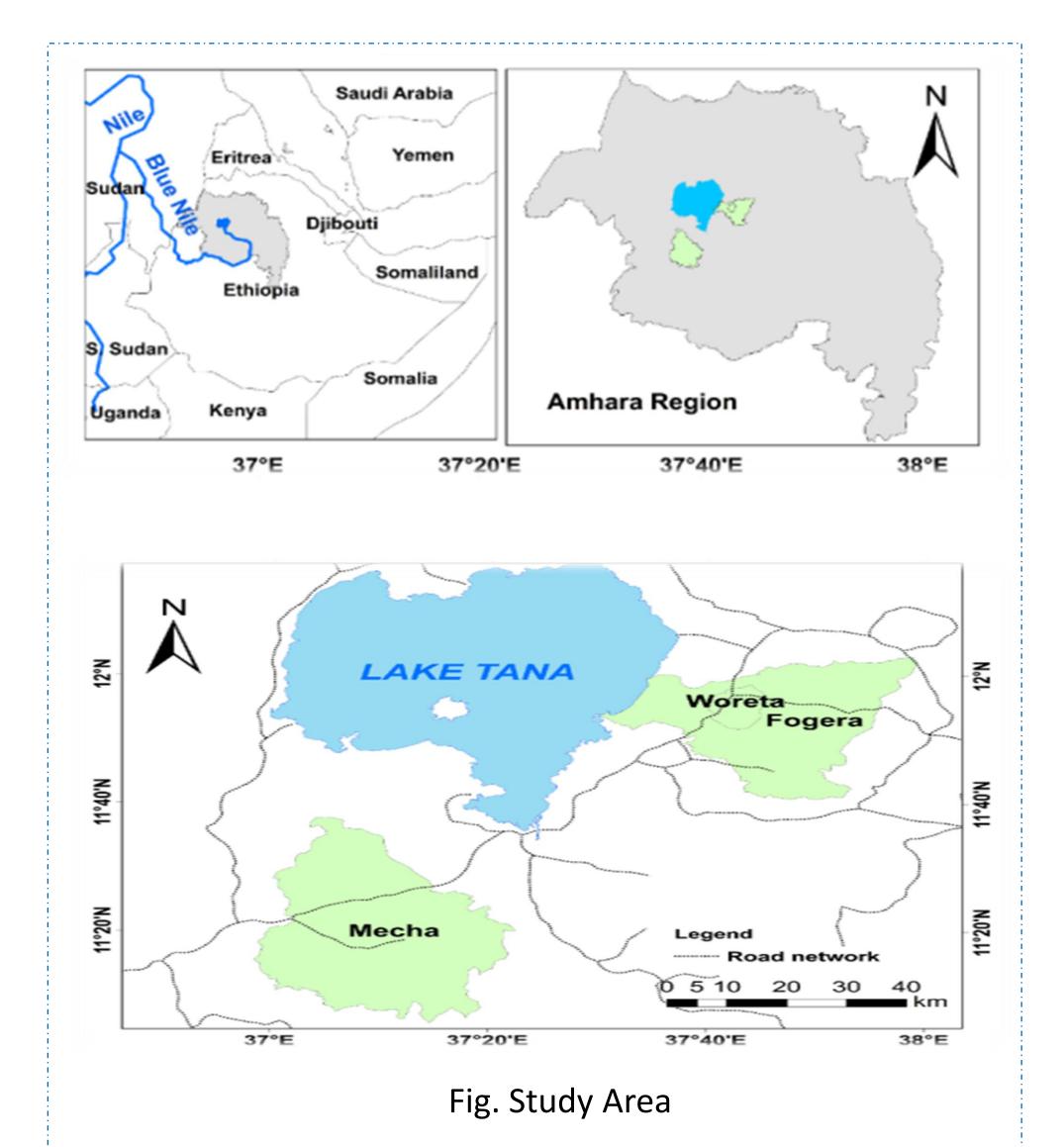


WEIHENSTEPHAN • TRIESDORF University of Applied Sciences

Production Efficiency of Smallholder Onion Producers in Amhara Region, Ethiopia


<u>Solomon Bizuayehu Wassie¹, Amarech Yitayeh¹, Ermias Tesfaye Teferi¹, Bernd Müller²</u>

¹Bahir Dar University, Ethiopia; ²Weihenstephan-Triesdorf University of Applied Sciences, HSWT International School, Germany

1. Introduction

• Onion has paramount health advantage, and it is indispensable in improving the taste of Ethiopian foods (CSA, 2022; Alemu et al., 2022).

• Hence, onion production has gained popularity in Ethiopia, contributing to the overall vegetable production (Taffese et al.,2023).

2. Estimation Strategy

• Sampling: Combination of Purposive and Multistage systematic random sampling procedure was employed

- Fogera and Mecha districts selected for their high potential
- Three kebeles were selected randomly from each district
- Likewise, households were randomly selected from each kebele
 Total of 380 households, proportional to the population in the kebeles

- Evidenced by **7.4% and 34%** increase in area coverage and production of onion production from 2019/20 to 2020/21 (CSA, 2022).
- However, its productivity in Ethiopia (**122.8 qt ha-1**) is far below the world average productivity of **211.2 qt ha-1** (FAOSTAT, 2021).
- In the context of developing countries where resources are scanty, improving efficiency using the existing technologies is more important (Bedasa and Krishnamoorthy, 1997).
- Therefore, the measurement of efficiency has remained an important area of research, especially in developing countries like Ethiopia.
 - Hence, there is a large pool of studies done on efficiency of agricultural production in Ethiopia
- Previous studies:
 - Lack consistency in their results
 - Widely limited to technical efficiency
 - The literature on efficiency of onion production is scanty
- Therefore, this study aims to analyze the level of and determinants for technical and economic efficiency of onion producers in Ethiopia.

- This study employes a stochastic frontier model that separately account for factors beyond and under the control of firms (Aigner et al., 1977).
- More formally, the production technology of a farm is represented by a stochastic production frontier as:

 $Y_i = f(X_i; \beta) + v_i - u_i$

 Assuming a self-dual Cobb-Douglas production function in equation (1), the dual cost frontier can be derived algebraically and written in a general form as follows:

$$C_i = h(W_i, Y^*; \alpha)$$

where is the minimum cost of the farm associated with adjusted output of is a vector of input prices for the farm, and is a vector of parameters to be estimated

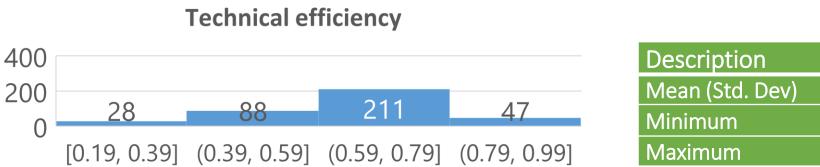
AE = ratio of min cost/actual cost; and EE = TE*AE

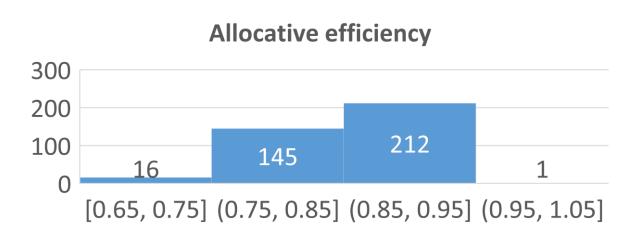
3. Result

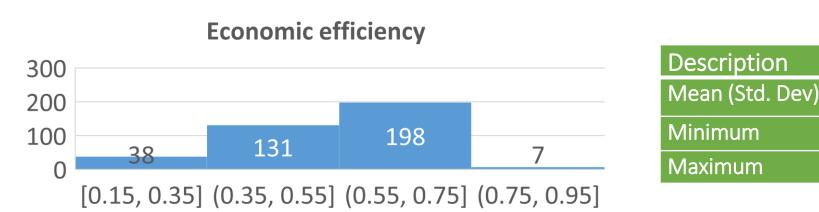
Table 1. OLS and Maximum Likelihood estimates of onion production function

VARIABLES	OLS	Frontier
In_Land_total	0.429***	0.416***
	(0.0359)	(0.0350)
In_Labor_total	0.652***	0.662***
	(0.0758)	(0.0747)
In_urea_onion	0.0164***	0.0153***
	(0.00510)	(0.00507)
In_NPS_onion	0.00980*	0.0116**
	(0.00561)	(0.00562)
In_insecticide_onion	0.0773***	0.0774***
	(0.0204)	(0.0189)
In_herbicide_onion	0.0182**	0.0175**
	(0.00714)	(0.00697)
In_fungicide_onion	0.00436	0.00396
	(0.00741)	(0.00718)
F Statistics	112.1***	
Chi_square (X2)		785.5***
R2	0.68	
$rac{\lambda}{\sigma^2}$		1.19 (0.16)
σ^2		0.44 (0.09)
Log likelihood		-290.4
Ho: sigma_u = 0		2.18*

• Results of OLS and ML estimation consistently show that all inputs (Land, Labor, Urea, NPS, insecticides, herbicides, and fungicides) are positive and significant.


• The null hypothesis for testing the existence of 'inefficiency' shows that there is considerable level of technical inefficiency, at 10% sig, level.


Table 2. Factors driving efficiency of smallholder onion producers (N = 374)


VARIABLES	te	ае	ee
Age (Years)	-0.000900	-0.000462	-0.000959*
	(0.000550)	(0.000506)	(0.000575)
Formal education (=1 if yes)	0.0125	-0.00574	0.00737
	(0.0131)	(0.0120)	(0.0137)
TLU (tropical livestock unit)	0.00474**	7.24e-05	0.00383
	(0.00233)	(0.00215)	(0.00244)
Family size (Active labor)	-0.00686	0.00304	-0.00315
	(0.00439)	(0.00404)	(0.00460)
Credit access (=1 if yes)	0.0224	0.00130	0.0139
	(0.0153)	(0.0140)	(0.0159)
Use pump (=1 if yes)	0.0648***	0.0907***	0.116***
	(0.0126)	(0.0116)	(0.0132)
Improved seed (=1 if yes)	0.0327**	0.00278	0.0280*
	(0.0138)	(0.0127)	(0.0145)
Extension service on seed (=1 if yes)	0.00376	-0.0415***	-0.0201
	(0.0127)	(0.0117)	(0.0133)
Extension service_fertilizer (=1 if yes)	-3.70e-05	0.0185	0.00501
	(0.0124)	(0.0113)	(0.0129)
Extension service_harvest (=1 if yes)	0.000231	0.0441***	0.0369**
	(0.0146)	(0.0135)	(0.0153)
Manure_use (=1 if yes)	-0.0120	0.0103	-0.0102
	(0.0126)	(0.0115)	(0.0131)
Training (=1 if yes)	-0.0137	-0.00685	-0.00963
	(0.0123)	(0.0113)	(0.0128)

Notes: ***, **, and * refer to 1%, 5%, and 10% significance level; Figures in parenthesis represents standard errors.

 As demonstrated below, the mean technical, allocative and economic efficiency is 69%, 76%, and 52% respectively.

cription	Values
n (Std. Dev)	0.69 (0.11)
mum	0.30
mum	0.88

Values

0.52 (0.12)

0.05

0.77

escription	Values
lean (Std. Dev)	0.76 (0.10)
linimum	0.38
laximum	1.00

Notes: ***, **, and * refer to 1%, 5%, and 10% significance level; Figures in parenthesis represents standard errors.

 We found that use of improved irrigation technology (pump) has a positive and significant effect on production efficiency (i.e., technical, allocative and economic efficiency).

• Increased technical efficiency can be because of the possible improvement in productivity, while the increased the allocative and

4. Conclusion

• There is high potential to increase productivity by improving efficiency of smallholder onion producers. Specifically, technical,

- economic efficiency can be associated with educed cost of production
- Likewise, adoption of improved seed has a positive and significant impact on efficiency of smallholder onion producers.
- The result also shows that extension service about onion harvesting has significant contribution to improve efficiency.
- However, contrary to our expectation, extension service on seed has impacted allocative efficiency negatively, this calls for revisiting the level of knowledge of extension workers regarding onion seed/seedling.
- Asset ownership (measured by TLU) has a positive and significant impact on technical efficiency. This can be partly because:
- Oxen is main source of draft power and
- Richer households are more likely to be able to make all the required investment for their onion farm.

Source: From internet

- allocative and economic efficiencies can be improved by 31%, 24% and 48% respectively.
- Improving the existing efficiency can be possible by promotion and adoption of improved technologies (i.e., irrigation pump and improved seeds) available in the area.
- Access to and improvement in extension service can also help to improve efficiency of smallholder onion producers.
- Hence, efforts in promoting technologies and the extension service should be reinforced.

Acknowledgment

We acknowledge that this research has benefited from DAAD funded TOMATO project (i.e. a collaborative project between Weihenstephan-Triesdorf University of Applied Sciences and Bahirdar University).

