

Consumers' willingness to pay for genetically biofortified foods: Evidence from Nigeria

<u>Titilayo Akinwehinmi, Birgit Gassler, Ramona Teuber</u>

Justus Liebig University Giessen, Institute of Agricultural Policy and Market Research, Germany

How will consumers react to the use of genetic engineering methods in biofortification?

- Genetic biofortification of staple foods can mitigate the persistent challenge of hidden-hunger in Sub-Saharan Africa (SSA).
- Yet, there is no robust evidence for consumer's acceptance/rejection of genetically engineered food in this region.
- Moreover, most of the consumers largely lack the knowledge of genetic engineering methods.

Research Questions

Without information, are consumers willing to pay for genetically biofortified foods?

What are the effects of different information on consumers' WTP for genetically biofortified foods?

Met	hods

- Study carried out in Nigeria.
- Food product: Cassava flakes (gari).
- 352 consumers.
- Data from cross-sectional and discrete choice experiment.
- Balanced test for randomization. Data fitted to random parameter logit models.

Variables	Description	Levels	Reference		Gari 1	Gari 2	Gari 3
Vitamin A	Percentage of body	60, 100	60				(Status quo)
(VA)	requirement for VA		0				
Iron	Percentage of body requirement for iron	0, 25,50	0	Vitamin A	Contains 60% of the average Vitamin A	e Contains 60% of the average Vitamin A	Does not contain Vitamin A required by the body
Starch Content	Cassava starch content	Low, High	High	Iron	Does not contain Iron required by the body	Contains 25% of the average Iron required by the body.	Does not contain Iron required by the body
Plant	Cassava breeding	Conventional	Conventional	Starch Content	Contains High Starch	Contains High Starch	Contains High Starch
Breeding	method	GM, GE		Plant Breeding Method	Conventional Method	Gene-Editing Method	None
Method				Price per Kg	₩ 300	№ 500	N 300
Price (NGN)	Price per 1kg of Gari	300, 500,700	300	I will buy	()	()	()

Results (Consumers WTP)

Mean WTP (Control)

- Consumers are willing to pay premium for the nutrients attributes.
- Consumers discounted the GM and GE methods.

Experimental Design

Respondents randomized into:

- **Control**: No information.
- **T1**: Information on health risks of micronutrient deficiencies and benefits of biofortification.
- **T2**: T1 + Information on breeding methods (Conventional, Transgenic (GM) and Gene Editing (GE)).

■ Vitamin A ■ Iron 25 ■ Iron 50 ■ Lowstarch ■ GM ■ GE

Comparing Treatment Groups to Control (Treatment Effects)

T1 reduces discount for GM and GE **significantly**.

T2 reduces discount for GM and GE **but not significantly**.

Conclusion

- Without information, consumers discounted genetically biofortified foods.
- Only information on health risks alone reduces the disutility for GM and GE significantly.
- With or without information, use of GM and GE may not significantly affect consumers' acceptance of genetically biofortified food

in Nigeria and similar contexts.

Selected References

- Bouis, H. E. and Saltzman, A. 2017. Improving nutrition through biofortification: A review of evidence from HarvestPlus, 2003 through 2016. *Global Food Security*, 12(2017), 49-58.
- De Steur, H., Wessana, J., Blancquaert, D, Van Der Straeten, D., Gellynck, X. 2017. The socioeconomics of genetically modified biofortified crops: A systematic review and meta-analysis. Annals of the New York Academy of Science, 1390 (2017) 14–33.
- Edenbrandt, A. K; House, L. A; Gao, Z; Olmstead, M; Gray, D. 2018. 'Consumer acceptance of cisgenic food and the impact of information and status quo', Food Quality and Preference, 69, 44-52.

titilayo.akinwehinmi@agrar.uni-giessen.de, birgit.gassler @agrar.uni-giessen.de, ramona.teuber@agrar.uni-giessen.de