Effect of canal conveyance efficiency enhancement on crop productivity in Nepal under climate change

Amit Kumar Basukala ${ }^{1}$, Livia Rasche ${ }^{2}$
1,2Research Unit Sustainability and Climate Risks, Center for Earth System Research and Sustainability, Universität Hamburg, Grindelberg 5, 20144 Hamburg, Germany
* Correspondence: amit.basukala@uni-hamburg.de

BACKGROUND:

- Nepal is expanding irrigation facilities to cope with the projected increase of drought periods in the growing season (Dahal, 2023).
- Irrigation efficiency in Nepal is around 30%, well below the potential efficiency of 60%. The goal is to increase efficiency to at least 50% by 2027 (DoWRI, 2019).
- Canal conveyance efficiency, operational efficiency, and application efficiency are three aspects which influence irrigation effieciency. More water is lost in longer than in shorter canals. Lining canals with bricks, plastic, or concrete reduces water losses (Irmak et. al,2011).

Fig.1. (a) earthen canal with low conveyance effieciency with high seepage and percolation loss, (b) concrete lined canal but not well maintained with low effieciency, (c) high effieciency well maintained canal lined with concrete.

RESEARCH QUESTIONS

- How will a change in canal conveyance efficiency (CCE) from 30% to 50% influence crop water availability - and thus crop yields - under current to near future climate conditions?
- How will a change in CCE from 30% to 50% influence crop water availability - and thus crop yields - under climate conditions at the end of the century?
- How large are the benefits with an increase to 70% CCE?

METHODOLOGY:

- Scope of the study:
- Canal conveyance efficiencies: 30\%, 50\%, 70\%
- Crops: rice, maize, wheat
- Climate change scenarios: SSP1-2.6 (low emissions), SSP3-7.0 (high emissions), and SSP5-8.5 (extreme emissions)
- 3430 simulation units covering Nepal
- Crop model simulations were performed for three periods 2022 to 2050 (Near Future), 2050 to 2075 (Mid Century) and 2075 to 2100 (End century)
- The EPIC crop model was used for the biophysical crop modelling (Williams et al.,1989).
- Model calibration was done adjusting crop parameters iteratively to match simulated yields with reported yields at the district level from 2015 to 2021
- Climate data projections were generated using 3 general circulation models (GFDL-ESM4, IPSL-CM6A-LR, and MPI-ESM1-2-HR), and bias adjustments were made as part of CMIP6 and sourced from ISIMIP3b.
- Results were aggregated at the district, province, and ecoregion levels for analysis for each time frames.

Fig.2. (a) Map of Nepal with the 3430 simulation units, (b) map of Nepal with the nine different ecoregions
Deutsche Deutsche
Forschungsgemeinschaft

