

Reusing pineapple residue to promote nutrient cycling and reduce GHG emissions in small-scale pineapple cultivation

Macagga¹ R, Hoffmann¹ M, Bayot² R, Sanchez² P

Leibniz Center for Agricultural Landscape Research (ZALF), Isotope Biogeochemistry and Gas Fluxes, Eberswalder Str. 84, 15374 Müncheberg, Germany ² Agricultural Systems Institute, College of Agriculture and Food Science, University of the Philippines Los Baños, 4031 College Laguna, Philippines

- Pineapple production in the Philippines is over 2.91 million metric ton annually (in 2022), most on small-holder farms.
- This generates large amounts of pineapple residues (PR) as byproducts that are usually not further utilized.
- Especially on the many small-holder farms these are either thrown out, left to rot or burned.

Our aim is to:

Vethor

- promote the closure of local nutrient-cycles (C/N/P/K) to maintain soil fertility and yields; and
- increase soil C sequestration and reduce GHG emissions during pineapple cultivation through PR reuse.

- PR addition increased P and K in soil, which was highest for MIN+PR.
- No increase in Δ %C was observed under PR addition (coarse ORG) material still present) compared to initial soil sample.
- Addition of PR both to MIN and ORG fertilizer treatments increased N,P,K from biomass harvested.

Figure 1. Experimental field site in Calauan, Laguna, Philippines

On-farm field trial experiment

Treatments:

-MIN fertilizer only (MIN) -PR incorporated in the soil -PR incorporated with MIN -PR incorporated with organic fertilizer (ORG; *vermicompost*) After initial sampling, conductance of C/N/P/K analysis of soil/plant every 3 months were performed.

On-farm field trial experiment

Application of DIY equipment to:

-Determine C sequestration and WUE through bi-weekly measuring CO₂ and ET exchange of different treatments. (Fig.2a) -Determine plant development by biomass sampling and measuring **NDVI** of pineapple plants under different treatments. (Fig.2b)

Figure 4. Plant development of pineapple plants using NDVI measurements

- Pineapple plants in the MIN+PR and ORG+PR treatments showed higher NDVI (Fig. 4)
- Similarly, higher dry biomass weight was observed for MIN+PR and ORG+PR treatments. (Fig. 5)
- Addition of PR to MIN and ORG treatments resulted in increased fruit weight and height. (Fig.6)

Figure 2. (a) CO_2 and (b) NDVI measurements in the field using developed low-cost DIY devices

Figure 3. Fruit height and weight measurement of harvest.

Average fruit weight and height per treatment were obtained from fruit harvest (Fig. 3)

Incubation experiment 3

> Use of incubation experiments to determine baseline GHG emissions (especially N₂O and CH₄) of different treatments at ZALF.

Treatments - MIN + PR - MIN ONLY - ORG + PR - ORG only - PR ONLY

Figure 5. Plant development of pineapple plants using dry biomass weight (in g)

Figure 6. Average fruit weight (in kg) and fruit height from harvest (in cm)

Conclusion and outlook

1. Reuse of PR in small-scale pineapple cultivation promotes nutrient cycling of N/P/K in plants and soil, which resulted in improved plant development and harvested fruit height and weight.

2. Results from CO_2 and ET measurements will be used to obtain net ecosystem C balance (NECB) and WUE for each treatments in conjunction with GHG emissions measurements from upcoming incubation experiment.

With support from

by decision of the German Bundestag

Federal Ministry of Food and Agriculture

Acknowledgement:

This project was funded by the Federal Ministry of Food and Agriculture of Germany (BMEL). We are also grateful for the support of our partner farmer Mr. Rodrigo Cachuela.

For more project information & updates: twitter.com/rePRISING reena.macagga@zalf.de

