

Understanding Farmers' Policy Preferences for Solar Powered Irrigation Systems in Karnataka, India: A Choice Experiment Approach

Aditya Korekallu Srinivasa and Dagmar Mithöfer Agrifood Chain Management Group, Humboldt-Universität zu Berlin

Background

- India aims to meet at least 50% of the total energy consumption through renewable sources by 2030 (GoI 2021^a).
- Solar Powered Irrigation Systems (SPIS) sustainable energy transition in agriculture.
- However, this could also incentivize over exploitation of water.
- India launched PM-KUSUM scheme, solar pump with monetary incentive to save water through grid connection and feed in tariff (GoI 2019).
- However, adoption of SPIS is very low (<10% of the target) (GoI 2021^b).
- Possible mismatch between what farmer wants v/s what is offered.
- > In this study, we examine the farmers preference for grid connected SPIS and the heterogeneity in preferences.

Concepts and methods

- Embedded QUAN(qual) approach.
- 21 in-depth interviews with stakeholders.
- D efficient experimental design for choice experiment.
- Primary survey of 500 farmers 31 villages, Mysore, Karnataka.
- Data analysis Random Parameter Logit (RPL).
- Attitudinal construct like Technophobia, Collectivism and Environmental concern used to explain heterogeneity in preferences.
- Six follow up, structured, in-depth interviews for triangulation.

	Qualitative Textual Evidence									
	1	2	3	4	5	6				
Stages	Design	Collection	Conversion	Analysis	Interpretation	Integration				
	In-depth interviews	Video/ audio recording	Transcribed, and translated interviews	Content analysis	Quotations, contextual story lines					
Farmers preference for different attributes of a solar powered irrigation pump	Attribute selection		2		analy an draw conclu	Integrative analysis and drawing conclusions				
	Choice experiment	Choice design and pilot	Primary survey and data cleaning	Descriptive analysis, Choice models	Model interpretation					

Attributes and levels for the choice experiment

Cost of the pump	 20 % of the original cost (original cost taken as 3 lakh Rs for a 7.5 HP pump) – Rs. 60,000 30 % of the original cost – Rs. 90,000 40 % of the original cost – Rs. 1,20,000 50 % of the original cost – Rs. 1,50,000
Term of the	 No loan 5 years - annual repayment (Loan 1)

Ioan

Attribute

- 7 years annual repayment (Loan 2)
- 10 years initial 3 years repayment holiday, followed by 7 annual repayment (Loan 3)

Levels of the attribute

Grid connection

- Standalone (Grid)
- Grid connected
- 2 year Annual Maintenance Contract (AMC). Service

Provision

5 year AMC (Service 1)

• 10 year AMC (Service 2)

energy

- Multiple uses of No
- the solar
- Yes (M. use)

Note: Dummy effect coding used for all variables except cost of the pump

Results of Choice Experiment

Willingness to Pay (WTP) for different attributes in US\$												
	_											
Coeff.	Loan 1	Loan 2	Loan 3	Grid	Service 1	Service 2	M. Use					
WTP	587	1518	1905	239	107	1498	466					
Lower CI	531	1452	1838	207	57	1445	433					
Upper CI	644	1587	1976	269	159	1555	498					

- Highest preference for loan with 10 years repayment period.
- > Service with 10 years warranty is also preferred by farmers.
- Low preference for grid connection!

Heterogeneity in WTP

WTP for Service and its relation with technophobia Technophobia index Technophobia mean Fitted values Fitted values

- > Technophobia (measures reluctance to try new technology) had positive association with WTP for service.
- > Lack of local service providers & expensive submersible pump repair could be the reasons for higher preference for service with longer warranty period.
- > Grid connection as an incentive for adoption may not be effective.
- > Qualitative interviews highlighted irregular power supply & human wild life conflict leads to preference for day time power (and SPIS!).
- > Interviews also highlighted that the choice experiment overestimated the WTP.

Conclusion

- Farmers in the region has high preference for SPIS.
- Without credit linkage, farmers may not prefer SPIS.
- Longer warranty periods can substitute for lack of local repair services for pumps.
- The study demonstrate the utility of mixed method approach in choice experiments.

Acknowledgement

Funding support for the study provided by Netaji Subhas ICAR- International fellowship of Indian Council of Agricultural Research, India and IRI THESys, Humboldt Universität zu Berlin.

Reference

GoI (2021)^a: National Statement by Prime Minister Shri Narendra Modi at COP26 Summit in Glasgow. New Delhi, India.

GoI (2021)b: Ministry of New and Renewable Energy, Government of India, New Delhi, India.

GoI (2019): Guidelines for Implementation of Pradhan Mantri Kisan Urja Suraksha evem Utthan Mahabhiyan (PM KUSUM) Scheme. MNRE, Government of India. New Delhi, India.

Urban, J. B., & van Eeden-Moorefield, B. M. (2018). Designing and proposing your research project. American Psychological Association.