Intra-household factors under different irrigation arrangements affecting irrigation-nutrition pathways in smallholder farm households in Kenya

Nixon Murathi Kiratu¹, Eefje Aarnoudse², Martin Petrick¹

¹Justus Liebig University of Giessen, Institute of Agricultural Policy and Market Research, Germany ²Bonn-Rhein-Sieg University of Applied Sciences, International Centre for Sustainable Development

Introduction

- Africa's □ Irrigation can increase agricultural production by 50%.
 - **E**.g. utilizing marginal lands, shift season-constrained rain-fed from agriculture especially in the face of to climate change.

🖵 Need irrigation ensure that

Problem & objectives

- Socio-technical set-up in which household irrigation takes place has given rise to different irrigation arrangements:
 - Public irrigation scheme arrangement (PIS).
 - Publicly funded and managed.
 - Farmer-led irrigation arrangement (FLI).
 - Farmer or farmer group initiatives.
 - NB: Need for disaggregated analysis.

- agriculture does not only increase caloric supply but also bolsters the regions **nutritional security**.
- U Women empowerment, production diversity and farm income are three vital irrigation-nutrition pathways.
 - □ Interlinkages of these 3 pathways with household factors makes them a key entry point for nutrition-sensitive food system initiatives.

- Such **analysis is missing** in literature.
 - **Factors** affecting irrigation-nutrition pathways remain largely **understudied**; and
 - Linkage of irrigation to nutritional outcomes remain vague and largely **uninvestigated**.
- Objective: Analyze intra-household factors that affect the three irrigation-nutrition pathways and dietary diversity.

Methods

Cross-sectional data

- **198 -** Non-irrigating farm households;
- **97** FLI farm households; and
- **89** PIS farm households.
- Sample of **387 smallholder** farm households.

Where *I* is the household **irrigation**

arrangement; α_i are the parameters to be

represents the household socio-economic

determined; u is the error term; and X_i

- Data collected in 1st Quarter of 2021.
- Heckman two-step regression model

1st stage: $I = \alpha_1 X_i + u$:

Descriptive statistics

Variables	Non-irrigators	FLI	PIS
Dependent variables	Means		
Women's empowerment	0.73	0.74	0.71
Production diversity	3.88	3.62	2.94
Farm income (USD)	746.60	2,140.97	1,908.31
Minimum dietary diversity for women	4.46	4.93	4.72
Independent variables	Means		
Age of the household head (years)	56.22	47.45	49.03
Age of the primary female decision maker (years)	51.88	41.63	44.29
Education level of the household head (years)	7.34	9.09	8.43
Education level of the primary female decision maker (years)	6.32	8.25	8.52
Gender of the household head (Female)	0.28	0.10	0.24
Household size	3.43	3.69	3.58
Single adult household type	0.27	0.13	0.21
Land owned (acres)	1.54	1.75	1.39
Land rental price (per acre)	104.47	162.24	330.69
Primary female decision maker production decision	0.82	0.68	0.61
Tropical livestock units	0.74	0.72	0.55
Assets (USD)	779.97	2,670.62	1,582.15
Household group membership	0.74	0.83	0.84
Knowledge of pumping technology	0.07	0.89	0.09
Access to hybrid seeds	0.37	0.55	0.62
Distance to the market (Kilometers)	3.48	4.51	2.89

Figure 3: Map of the study area

- **2nd stage:** $Y = \beta_1 X_i + u$:
 - Where Y represents production diversity, farm income, women empowerment and **dietary diversity**; β_i are the parameters to be determined; *u* is the error term; and X_i represents the household socioeconomic factors.

factors.

Regression results & discussion

Farmer-led irrigation arrangement		
	Primary female decision maker production decision	0.13***
Women	Assets (USD)	>0.00*
empowerment	Household group membership	>0.00*
	Age of the household head (years)	0.01**
Production diversity	Tropical livestock units	0.74***
Farm income	Land owned (acres)	1018.97***
	Primary female decision maker production decision	0.43**
MDDW	Tropical livestock units	0.20*
	Land owned (acres)	0.11*

3 key points:

- 1. Ability of the primary female decision maker making production decisions enhances women's empowerment for both irrigation arrangements;
 - 2. Ownership of livestock is a key contributor to the household's nutrition; and
 - **3. Land ownership** is a key factor to the improvement of **farm income**.

	Public irrigation scheme arrangement	Coefficient		
Momon	Primary female decision maker production decision	0.17***		
empowerment	Assets (USD)	>0.00*		
	Household group membership	0.12**		
Farm income	Land owned (acres)	1371.36***		
MDDW	Tropical livestock units	0.40***		
	Age of the household head (years)	-0.03**		
Notations: The notations and the meanings are as follows: *** p<.01, ** p<.05, and * p<.1.				

Notations: The notations and the meanings are as follows: *** p<.01, ** p<.05, and * p<.1.

NB: Socio-economic factors only significant for FLI production diversity analysis only.

Conclusions

- > Different household factors affect women empowerment, production diversity and farm income differently in households depending on the irrigation arrangement.
- > Ability of the primary female decision maker making production decisions and assets are key factors for household women's empowerment.
- > Land ownership and livestock-keeping are important factors that influence household farm income and dietary diversity respectively.

Policy recommendations

- ✓ Need to have **policy specific approaches and initiatives** that are geared towards specific irrigation arrangements.
- Household socio-economic factors are viable irrigation-nutrition pathways policy entry points.

Contact information Justus Liebig University of Giessen Institute of Agricultural Policy and **Market Research** nixon.kiratu@agrar.uni-giessen.de

nixonstudy@gmail.com

JUSTUS-LIEBIG-

Agricultural Economics, Bioeconomy and Sustainable Food Systems NTERNATIONAL PHD PROGRAM

