Land-use change within the western Amazon region: analyzing spatial variations on forest structure with remote sensing-based techniques

Raquel Capella Gaspar Nepomuceno¹; Valerie Graw²; Daniel Callo-Concha¹³ 1- RPTU Kaiserslautern-Landau; 2- Ruhr-Universität Bochum (RUB); 3- Rheinische Friedrich-Wilhelms-Universität Bonn

\mathbf{H}		

General Context:

- Population growth and acceleration of resource exploitation as vectors of land-use change and ecosystem degradation
- Besides direct land-use change through deforestation, alterations on forest structure might be noted on standing vegetation
- Disrupted ecosystem conditions are reflected on the alteration of biophysical parameters and consequently on biological composition

METHODS

Hansen's Forest Structure Condition Index (SCI):

- "The SCI is expected to better predict habitat suitability for foreststructure dependent species and community richness than forest presence or forest intactness." - Hansen et al. (2019)
- Original model: reference date 2012
- Model input layers:

Input Datasets Original Adapted Forest Loss-------> 2000-2017 2000-2022 Forest Forest Height 2012 2019 Structure Tree Cover 2010 2015/2020

• Satellite-based assessments on forest structure can be used as a biodiversity proxy

Study Sites:

Three Protected areas in the western Amazon region, along the Interoceanic Highway:

- Extractive Reserve [RESEX] Chico Mendes (Brazil)
- Manuripi-Heath Amazonian Wildlife National Reserve (Bolivia)
- Tambopata National Reserve (Peru)
- Model classification scheme (implementation with Google Earth Engine):

Loss Year	Forest height (m)										
	Canopy	0-	>5-15		>15-20		>20				
	cover (%)	5	Canopy cover (%)			Canopy cover (%)		Canopy cover (%)			
	<25%		25-75	>75-95	>95	25-75	>75-95	>95	25-75	>75-95	>95
2013-2017	1	1	1	1	1	1	1	1	1	1	1
2001-2012	1	1	2	3	4	5	6	7	8	9	10
<=2000	1	1	10	11	12	13	14	15	16	17	18

Adaptations: (i) Loss year ranges: 2020-2022 and 2001-2019; (ii) Forest height thresholds: 15-27, >27; (iii) Canopy cover ranges: 25-65, 65-75; >75

Field-collected Data: basis for model validation and adaptation

Plantations (PT) = 28282 georeferenced coordinates

, Vegetation Regrowth (VR) = 51..... Young Secondary Forests (YSF) = 50 Mature Secondary Forests (MSF) = 53 → Floodable Forests (FF) = 29 Degraded Primary Forests (DPF) = 13 ^a Stable Primary Forests (SPF) = 41

Objectives:

- Update and validate Hansen's forest structure model, for the year 2020
- Refine the index calculation based on field collected observations
- Carry a comparative assessment among the 3 selected protected areas

• Climax Primary Forests (CPF) = 17

RESULTS

Results reflect the types and

around the selected study sites.

Within the Reserves: SCIs 17+18

- 69% in Manuripi
- 60% in Tambopata
- 43% in RESEX (less than 10% of SCI-18)

Within the Buffer Zones: SCIs 17+18

- 67% around Manuripi
- 45%% around Tambopata
- 11% around RESEX

SCI-1

- 7% around Manuripi
- 23% around Tambopata
- 60% around RESEX

Adapted version generated a more

previously largely saturated on the

refined forest classification,

highest values.

- <u>Vegetation of high human intervention (PT+VR)</u>: 66% of the sampled data correspond to SCIs 1 to 3, being other 10% related to SCI-14 intensity of land-use within and
 - Young Secondary Forests (YSF): 50% of sampled data related to SCI-14 and
 - -15, being still 20% linked to SCI-17 and 10% to SCI-18
 - <u>Primary Forests (DPF+SPF+CPF)</u>: 86% of sampled data related to SCI-17 and
 - -18, and the remaining coordinates mostly associated to SCI-15 (11%)

CONCLUSION

• Overarching categories can be fairly well distinguished, although not sensible enough to reflect all on-field observed vegetation categories • Index allows for large scale-assessments that support identification of major patterns and priority areas for conservation. - Ex: the need of adopting special strategies at RESEX considering local particularities.

AKNOWLEDGEMENTS

CONTACT