# Factors associated with the adoption of diversified farming systems: a global meta-analysis.

#### **INTRODUCTION**

Diversified farming systems (DFS) are increasingly recognized as a set of cross-scale functional practices that make it possible to produce food more sustainably by providing economic, environmental and social benefits to farmers, rural communities and wider society <sup>1, 2, 3</sup>.

Despite the benefits of DFS, unsustainable monocultures and intensive farming systems continue to be promoted over DFS in many places <sup>4</sup>. To reverse this trend and achieve a global goal to shift to sustainable agricultural production systems, policymakers and businesses would benefit from understanding which farm-household specific and contextual factors affect DFS adoption.

## **RESEARCH QUESTION**

What factors are associated with the adoption of Diversified Farming Systems, worldwide?



Sánchez Bogado, Andrea C.<sup>1, 2, 3</sup>; Jones, Sarah<sup>1</sup>; Estrada-Carmona, Natalia<sup>1</sup>; Chéron-Bessou, Cécile<sup>3,4</sup>; Beillouin, Damien<sup>5,6</sup>; Rapidel, Bruno<sup>2,3</sup>



Alliance of Bioversity International and CIAT, Montpellier, France
 CIRAD, UMR ABSys, F-34398 Montpellier, France
 ABSys, Univ Montpellier, CIHEAM-IAMM, CIRAD, INRAE, Institut Agro, Montpellier, France
 4,5 CIRAD, UMR ABSys, James Cook University - Cairns Campus - 14-88 McGregor Rd QLD 4878 Smithfield, Australia
 6 Hortsys, CIRAD, Montpellier, France
 5,6 CIRAD, UR Hortsys, Campus agro-environnemental Caraïbe - BP 214 97285 Le Lamentin Cedex 2 Martinique

#### **METHODOLOGY**

#### SYSTEMATIC LITERATURE REVIEW

- String-based search on Web of Science and Scopus
- Systematic search in the reference of publish meta-analyses on this subject
- 5879 articles were identified and screened for inclusion.

### **INCLUSION CRITERIA**

- Articles with full text in English.
- Using multiple regression models to test which factors are associated with the adoption of DFS.
- Providing quantitative data: regression coefficients, sample sizes and precision measure (SE, t-value, or p-value).
- No restrictions on the year of publication or location.

### **META-ANALYSIS**

**Figure 1.** Geographic distribution of the included articles and regression models.

### AGROFORESTRY 43 articles | 66 models



**FALLOW** 7 articles | 24 models

#### **CROP ROTATION** 26 articles | 34 models



**AGRI-SILVOPASTURE** 5 articles | 6 models

# 19 articles | 27 models

**INTERCROPPING** 



**COVER CROPS** 5 articles | 6 models Partial Correlation Coefficient (PCC) effect sizes were computed using the t-ratio and the degrees of freedom (*df*)<sup>5</sup>. PCC is a free-scale measure of association between two variables.
Three-level random effects meta-analysis was conducted to estimate the overall association between analysed factors and the adoption of DFS.



by Projeto Cafe Gato-Maurisco, 2022. Retrieved from Unsplash.

by FAO-GIAHS, 2012. Retreived from Flickr.

by Eric Toensmeier, 2017. Retreived from Flickr.

# **Figure 3:** Diversified Farming Systems





**Figure 2.** Distribution of the included articles by Diversified Farming System and factor category. The bar colours represent the different factor categories.

#### RESULTS

- 89 articles met our inclusion criteria, reporting results of 177 regression models.
- Our final meta-dataset included 30 factors that could be associated with the adoption of 9 DFS in 29 countries.

**Figure 4.** Partial Correlation Coefficient (PCC) of the association between factors and the adoption of diversified faming systems. The value of each factor on adoption is represented as a point with error bars showing the  $\pm$ 95% CI. Significant at: \* 5% level, \*\* 1% level, \*\*\* 0.1% level.

#### CONCLUSION

- Access to knowledge and secure land tenure are the most important drivers of DFS adoption.
- The most studied factors were farm size, household size, and farmer's age, gender and association membership.
- The most studied DFS were agroforestry, crop rotation, intercropping and fallow.
- DFS adoption was positively associated with increased access to extension services, agricultural training, formal education, and secure land tenure.

#### REFERENCES

- 1. Rosa-Schleich, J., et al. (2019). Ecological-economic trade-offs of Diversified Farming Systems A review. Ecological Economics. 251-263, 160.
- 2. Tamburini, G., et al. (2020). Agricultural diversification promotes multiple ecosystem services without compromising yield. Sci. Adv. 6: eaba1715.
- 3. Varyvoda, Y., and Taren, D. (2022). Considering Ecosystem Services in Food System Resilience. IJERPH. 19, 3652.
- 4. FAO. (2017). The future of food and agriculture Trends and challenges. Rome. 163 p.
- 5. Stanley and Doucouliagos, (2012). Meta-Regression Analysis in Economics and Business. New York, USA. 197p.

- None of the biophysical factors had a significant influence on adoption, suggesting that DFS can happen anywhere, irrespective of soil type, climate, or topography.
- Adoption of DFS is not limited by overall household income, farm size or farm accessibility.
- Holistic initiatives and policies that encompass socio-economic empowerment, knowledge dissemination, and targeted support mechanisms are needed to drive sustainable agricultural transformations.





