ENTERIC METHANE EMISSIONS OF PERI-URBAN DAIRY FARMS DURING THE WET SEASON IN SOUTHERN BENIN

Fifame Panine Yassegoungbe^{1,2}, Gaius S. Vihowanou¹, Tawakalitu Onanyemi¹, Eva Schlecht² and Luc Hippolyte Dossa¹

¹Laboratory of Animal Sciences (LaSA), Faculty of Agricultural Sciences, University of Abomey-Calavi, Benin, ²Animal Husbandry in the Tropics and Subtropics, University of Kassel and Georg-August-Universität Göttingen, Germany

Corresponding author: panineyasse@yahoo.com

Background and Aims

- Enteric methane (eCH₄) emitted by ruminant livestock, especially lactating cows, is a major environmental pollutant worldwide.
- Six pasture-based dairy farm types (FT) were identified in the peri-urban areas of South Benin (Fig. 1) and characterized as follows: Small-Herds-Zebu cattle

(FT1); Small-Herds-Taurine cattle (FT2); Medium-Herds-Zebu cattle (FT3); Medium-Herds-Taurine cattle (FT4); Large-Mixed-Herds-Taurine-Zebu cattle (FT5); and Medium-Mixed-Herds-Taurine-Zebu cattle (FT6).

- Quantification of their eCH4 emissions is lacking, but necessary for reliable national methane emission inventories.
- → We estimated eCH₄ emissions from different animal categories (bull, cow, steer, heifer) across the different FTs.

Fig. 1. Map of South Benin showing the study area

- One animal per category and herd selected.
- Prediction of live body weight (LBW) from linear body measurements (Fig. 2)
- Grazing behavior (Fig. 3) monitored for 3 consecutive days.
- Assessment of daily grazing duration; bite counts and handplucked bite mass (Fig. 4)
- Feed dry matter intake (DMI) estimated as a function of grazing

Fig. 3. Cattle grazing on natural vegetation in a peri-urban area

Results

- DMI (kg/d) varied (p<0.05) between FTs for all animal categories, ranging from 0.9 2.3 in steers, 1.9 4.7 in bulls, 1.4 2.8 in heifers, and 1.7 3.6 in lactating cows.
- Lowest GEI (MJ/kg MW/d) occurred in FT1 bulls (0.20) followed by FT3 cows (0.23); highest GEI (p<0.05) was observed in FT2 steers (0.72).
- Highest eCH₄ emissions (g/kg MW/d) were recorded in lactating cows (16.7) and heifers (8.9) of FT5 (Fig. 5).

	ך 18	
(0	16 -	
	14 -	

behavior and metabolic body weight (MW = $LBW^{0.75}$)

Fig. 2. Animal body measurement

Fig. 4. Monitoring a grazing cow

- Gross Energy Intake (GEI) was predicted via near-infrared spectroscopy.
- eCH₄ emission factors and emissions for each animal category were estimated using GEI and IPCC Tier 2 approach, and

Fig. 5. eCH4 emissions by animal category and farm type

compared across FTs.

• All statistical analyses were performed with R software.

Conclusions

- A switch to small herds of taurine and zebu cows reduces eCH₄ emissions on peri-urban dairy farms in southern Benin.
- These farm types are adapted to local conditions and should be selected to increase regional milk production.

