

Factors affecting the transition to the long-rotation plantations of smallholders A case study in Quang Tri province, Central Vietnam

Vo Thi Hai Hien¹, La Thi Tham^{1,2*}, Doan Thi Han¹ 1Vietnam National University of Forestry, Hanoi, Vietnam 2 VNU University of Economics and Business, Hanoi, Vietnam

INTRODUCTION

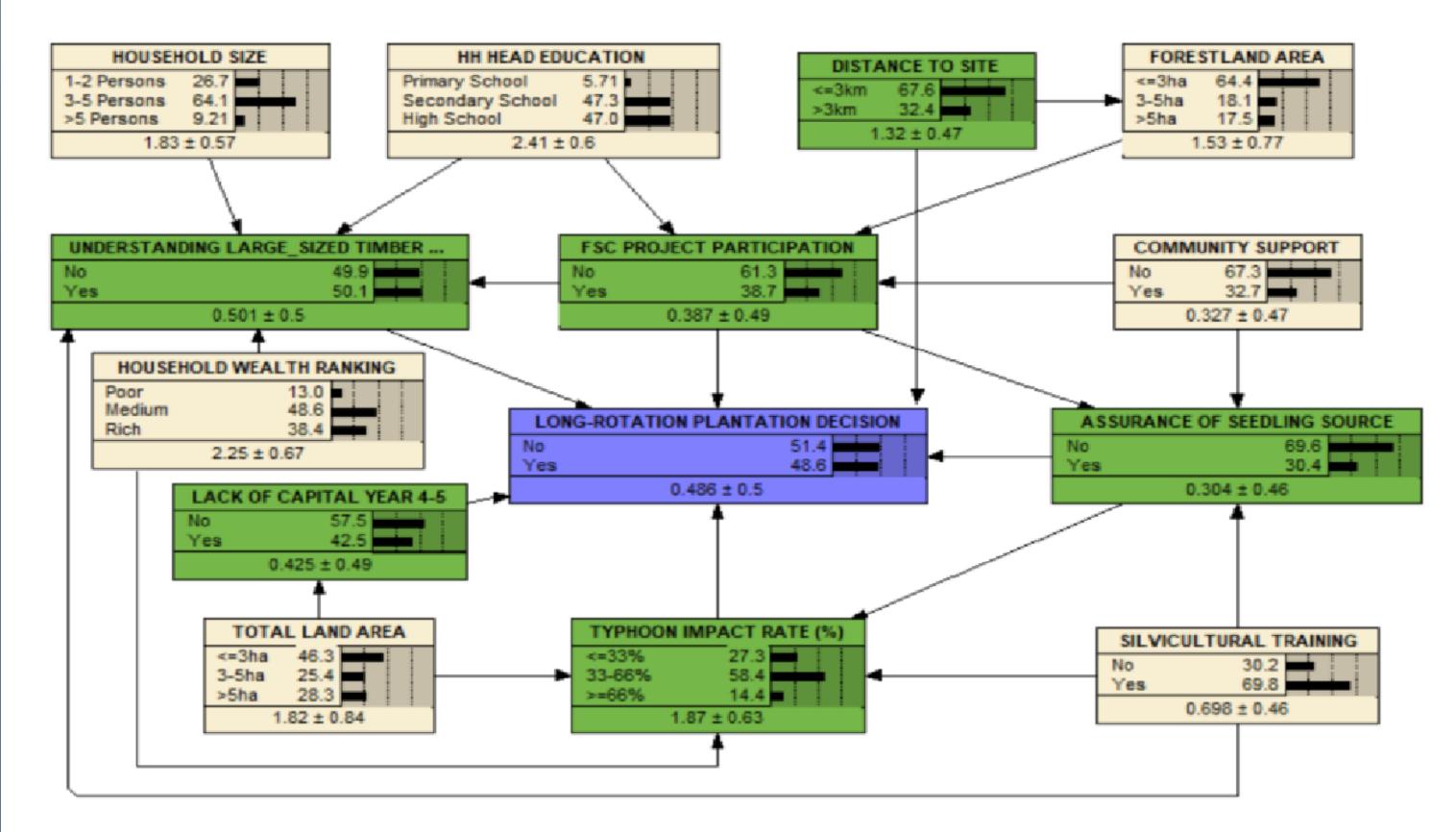
- In Vietnam, plantation forests as an important source to sustain the material supply.
- Approximately half of the plantation forests is under the management of smallholder households.
- Acacia hybrid (Acacia auriculiformis x Acacia mangium) gains popularity.
- Long-rotation plantations as a potential manner to mitigate climate change impacts.
 Management practice of small-scale timber producers is at a low level.

OBJECTIVE

To elucidate key factors affecting the transition from the premature harvest to the long-rotation plantation of small-scale timber producers

METHODOLOGY

- Case study: Quang Tri province, central Vietnam.
- Interviewed 315 household heads, following stratified random sampling approach.
- Binary Logistic Regression and Bayesian Network models.
- Group discussions and expert interviews.

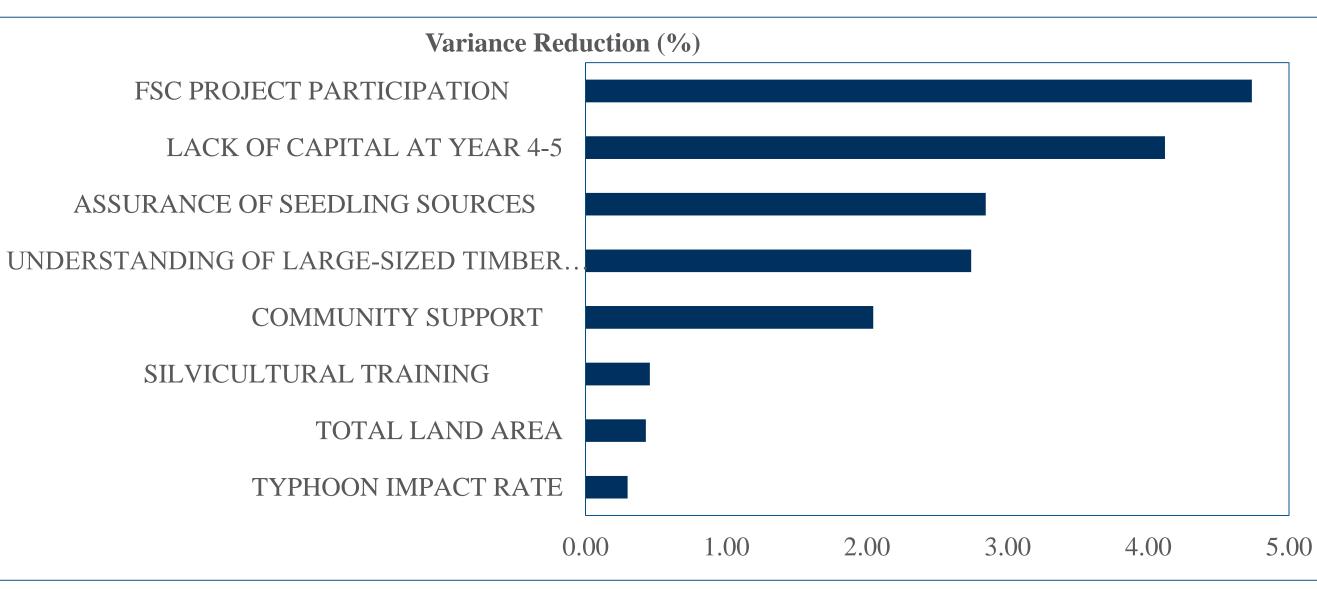

KEY FINDINGS

General characteristics of surveyed households

Long-	rotation pla	intation	Total		Sig. value for t-test	
Short-rotation		Long-rotation				Std.
Mean	Std. Dev.	Mean	Std. Dev.	Mean	Dev.	(2 tailed)
55.13	11.49	52.68	9.85	53.90	10.76	.040**
9.56	2.15	10.13	1.98	9.85	2.08	.014**
3.39	1.33	3.78	1.37	3.58	1.36	.011**
3.44	2.83	6.01	4.79	4.72	4.13	$.000^{***}$
2.67	2.51	4.92	4.72	3.80	3.93	$.000^{***}$
2.85	1.60	4.73	9.45	3.79	6.82	.015**
	Short- Mean 55.13 9.56 3.39 3.44 2.67	Short-otation Mean Std. Dev. 55.13 11.49 9.56 2.15 3.39 1.33 3.44 2.83 2.67 2.51	Short-rotation Long Mean Std. Dev. Mean 55.13 11.49 52.68 9.56 2.15 10.13 3.39 1.33 3.78 3.44 2.83 6.01 2.67 2.51 4.92	MeanStd. Dev.MeanStd. Dev.55.1311.4952.689.859.562.1510.131.983.391.333.781.373.442.836.014.792.672.514.924.72	Short-retation Long-rotation Mean Mean Std. Dev. Mean Std. Dev. Mean 55.13 11.49 52.68 9.85 53.90 9.56 2.15 10.13 1.98 9.85 3.39 1.33 3.78 1.37 3.58 3.44 2.83 6.01 4.79 4.72 2.67 2.51 4.92 4.72 3.80	Short-relation Long-relation Mean Mean Std. Dev. Mean Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Mean Mean Mean Std. Dev. Mean Mean

KEY FINDINGS (cont.)

Result of Bayesian Belief Network and sensitivity analysis



- Domination of middle and upper age classes of HH heads with availability of family labor.
- Long-rotation smallholders show higher educational level and lager plantation area
- Long-rotation smallholders have to travel for a longer distance.

Result of binary logistic regression model

Variable	B	S.E.	Wald	Sig.	Exp(B)	Exp(B)
Constant	-1.087	1.659	.429	.512 ^{NS}	.337	adjusted 2.967
Lack of capital	-6.609	1.401	22.250	.000***	.001	1000.000
FSC participation	7.456	1.579	22.285	$.000^{***}$	1730.136	1730.136
Assurance of seedling source	4.132	1.095	14.238	.000***	62.310	62.310
Typhoon impact rate	-1.650	.694	5.658	.017**	.192	5.208
Understanding of large-sized timber market	3.048	.834	13.348	$.000^{***}$	21.073	21.073
Distance to plantation	1.875	.803	5.448	.020**	6.520	6.520

Sensitivity analysis of long-rotation plantation adoption decision

CONCLUSION

Five key factors significantly impact the long-rotation plantation adoption:

- FSC project participation (1st)
- Availability of capital for investment,
- Assurance of seedling source,
- Understanding of large-sized timber market,
- Community support.

Producers' behaviors should be put in larger context to clarify profoundly their characteristics, activities and performances. Roles of the government, supporting organizations and industry sectors

• ,	
site	

.005 5.

0.520

0.520

Dependent variable: Long-rotation plantation decision by households (1=Long-rotation; 0=Short-rotation)

Six key factors: Lack of capital for investment (-), FSC project participation (+), assurance of seedling source (+), typhoon impact rate (-), understanding of large-sized timber market (+) and distance from house to plantation site (+).

References

Harwood, C. E., Nambiar, E. K. S., Dinh, P. X., Toan, L. X., & Quang, L. T. (2017): Managing wood production from small grower Acacia hybrid plantations on eroded soils in central Vietnam, Australian Forestry, 80:5, 286-293.

IUCN. (2018b). Strengthening Policies and Financing for Sustainable Development of Longer Rotation Forest Plantation in Vietnam, Da Nang, Vietnam.

Zhunusova, E., Sen, L. T. H., Schröder, J.-M., Ziegler, S., Dieter, M., & Günter, S. (2019). Smallholder decision-making on sawlog production: The case of Acacia plantation owners in central Vietnam. Forests, 10(11), 969.

