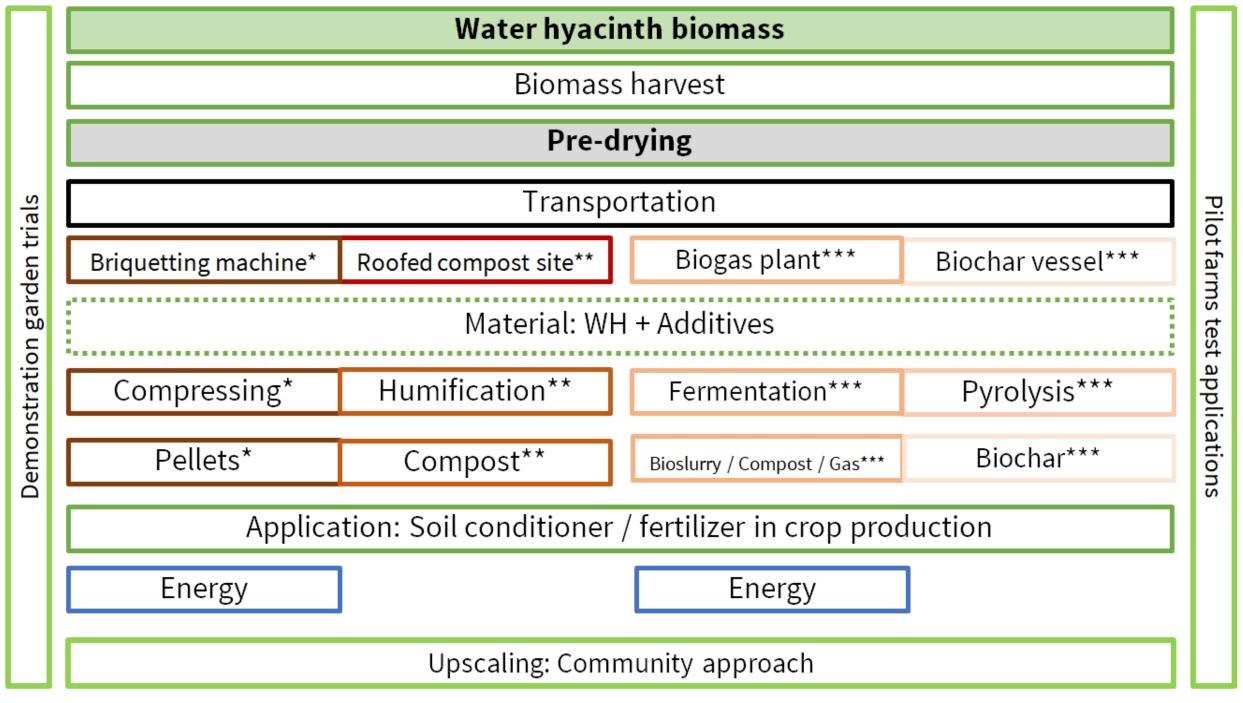


Biochar and Bioslurry production using Water hyacinth from Lake Tana, Ethiopia Methodological issues and impact on crop yields

Dessie Tibebe¹, Bilhate Chala², Tewodroes Mulu¹, Teferi Alem³, Mohammed Gedefaw³, Tayachew Nega⁴, Marelign Adugna³, Yezbie Kassa¹, Beatriz Waldmann⁵, Tadesse Adgo⁶, Christoph Pfeifer⁷, Bernhard Freyer⁷

Introduction


The proliferation of exotic water hyacinth (Eichhornia crassipes) in Lake Tana, Ethiopia, is a result of nutrient input via soil erosion and municipal waste, disrupts ecosystems and fishery.

II. Interactions with the local community and experts

- **1.** <u>Information events:</u> Farmers introduce scientists into the WH challenges
- **2. Trainings:** Farmers are trained, employed for harvesting and preparing the WH for testing and field trials
- **3. Workshops:** farmers and experts discuss the WH challenges,

- Multiple (inter-) national conflicts have tripled the mineral fertilizer costs in the Amhara region, and fundamentally limited access, emphasizing the project's role.
- Utilizing WH biomass as an organic fertilizer / amendment via bioslurry (biogas) and biochar, the endeavor merges ecological restoration and agricultural resilience as a scientific answer to intertwined environmental and geopolitical challenges, and finally to contribute to food security and human health.

experiences with bioslurry and biochar production, and future perspectivespersonal observation

Preliminary results

Preparation of WH:

Supported by farmers the WH was prepared with local technology. Preparation is labor intense.

Lab scale and pilot scale test:

- Biogas production: Favorable C/N ration for gas production; Gas potential is generally high primarily from the WH stem; Methane from WH stem is 20,6 / 16,8 l kg FM-1 and qualifies for biogas production.
- Biochar production from WH stem: particularly from the stem high burnability; pH 11,2; extremely low heavy metal content.

Farmer and expert workshops

<u>Outlook</u>

* Not part of the project Water for Life (possibility of development in the future); **Being undertaken by the UoG; ***Part of the application; *, **, *** Part of the literature review

Materials and Methods

I. Analytical steps

- **1. Preparation of WH:** Collection from Lake Tana, sundried up to moisture content below 15%, and stem cut in pieces 2-3 cm for both lab and pilot scale; Physic-chemical analysis of the different parts of the plant.
- 2. Testing WH at lab scale: For biochar, controlled pyrolysis using steel barrels with a surface area of 0.212 m2, temperature monitoring, and measurement of final biochar weight was evaluated. The lab-scale biogas experiments evaluated the methane potential of different WH parts using 0.5 l conical flasks.
- **3. Testing WH at pilot scale:** For biochar, steel barrels with a surface area of 0.212 m2 have been applied, temperatures reached 200-500°C. For biogas, a stainless-steel barrel of 600 l was used.
- **4. Testing the impact of pilot scale products on crop yield of teff (ongoing):** Different variants of biochar, bioslurry and combinations incl. mineral fertilizers and their impact on teff yield.

- 1. Pilot scale tests will be added by **nutrient analysis**
- Further tests to produce biochar and bioslurry / biogas of all plant parts are necessary
- 3. Impact on **teff yield** and **nutrient balance** will be analysed
- 4. Experiments under **farm conditions** will be established
- 5. Comparison with **WH compost** will be included
- **6. Farmer and expert** feedback workshops and trainings incl. technology, economy and labour assessment will continue
- 7. Policy briefs including upscaling of practices will be summarized and used for discussion and dissemination

<u>Conclusions</u>

Transforming WH into biogas, bioslurry and biochar helps to **sanitate Lake Tana, increases fish production**, and optimizes **soil fertility** and **crop yields**. There is **interest from the local farmers** to learn the techniques and use those fertilizers in their fields.

a) Dry Stem WH

b) Biochar from stem

c) powdered Biochar

Teff trial

¹ College of Natural and Computational Sciences, University of Gondar | P. O. box 196, Ethiopia | Advised Advis

⁷ University of Natural Resources and Life Sciences, Vienna (BOKU) | 🖂 <u>christoph.pfeifer@boku.ac.at</u>, <u>privatissimum@gmail.com</u>

More Information: <u>https://en.nabu.de/water-for-life</u>

Impressum 2023, NABU e.V. The Nature and Biodiversity Conservation Union Charitéstraße 3, 10117 Berlin

Text und Gestaltung Bernhard Freyer, Beatriz Waldmann

Pictures Credit Bilhate Chala, Dessie Tibete, NABU