

Potential of insect frass as a bio-organic fertilizer from super worm (Zophobas morio) and mealworm (Tenebrio molitor)

Phanumat Ainta¹, Korrawat Attasopa², Thewin Kaeomuangmoon¹, Nuttapon Khongdee³, Jeeranan Khomampai¹, Yupa Chromkaew^{1*} ¹Chiang Mai University, Department of Plant and Soil Science, Thailand, ²Chiang Mai University, Department of Entomology and Plant Pathology, Thailand, ⁴Chiang Mai University, Department of Highland Agriculture and Natural Resources, Faculty of Agriculture, Thailand

*Corresponding author: E-mail yupa.c@cmu.ac.th

Graphical abstract

Introduction

> Insect frasses have literally been studied as a bio-organic fertilizer as it contains high plant nutritional values such as nitrogen (N), phosphorus (P) and potassium (K) as well as the potential presence of beneficial microorganisms.

Material and Method

- SEM-EDS characterization of frass: The inner morphology of frass by using a Scanning Electron Microscope (SEM) with energy dispersive X-ray spectroscopy (EDS), the shape and size of frasses, as well as their chemical compositions by weight, were analyzed.
- Chemical analysis: Frass was analyzed for pH, total carbon (C), total nitrogen (N), total phosphorus (P), and total potassium (K).
- Isolation of microorganisms: The screening and isolation of microorganisms were analyzed by serial dilution and plate count.

- > Objective
 - \succ To compare physical, chemical and microbiological properties of super worm (Zophobas morio) frass and mealworm (Tenebrio molitor) frass as potential bio-organic fertilizers.

Result (cont.)

Chemical analysis

Table 1. Chemical analysis of frass

Sample	pН	Total C (%)	Total N (%)	Total P (%)	Total K (%)
Super worm frass	7.21	29.02	4.00	1.33	1.47
Mealworm frass	6.86	28.96	5.09	1.38	2.29

The isolated microorganisms were evaluated for their plant growthpromoting potentials.

Result

Physical properties

Screening and selection of frass

Figure 2 : Comparing microbial isolates of super worm frass and mealworm frass

Table 2. Microbial isolates for promoting plant growth

NT. fialat

Figure 1: a uniform distribution of nutrients (N, P and K) within the frass organic matter (represented by the C and O maps), suggesting the absence of isolated mineral phases which might potentially drive nutrient release by frass.

Acknowledge

> This research work was partially supported by Graduate School, TA/RA Scholarship, Chiang Mai University, Thailand. > This research was financially supported by Chiang Mai University, Thailand.

	INO. OI ISOIATES				
Insect frasses	Nitrogon fiv	Phosphorus	Cellulase		
	Innogen-nx	solubilization	production		
Super worm	2	_	1		
Mealworm	4	3	3		

Conclusion

- Super worm frass and Mealworm frass enhance water holding capacity, enrich in nutrient concentration and promote plant growth.
- > Therefore, nutritional content and associated microbiota, can be potentially used as a bio-organic fertilizer in organic farming.