

Root-soil-contact influences on maize root growth, nutrient uptake, and nitrogen-cycling microorganisms in the rhizosphere

Janadi C. Ileperuma¹, Anna S. Wendel¹, Sara L. Bauke², Claudia Knief¹ 1 University of Bonn, Inst. Crop Sci. and Res. Conserv. (INRES) - Molecular Biology of the Rhizosphere, Germany 2 University of Bonn, Inst. Crop Sci. and Res. Conserv. (INRES) - Soil Science and Soil Ecology, Germany

Introduction:

- The rhizosphere is a rich niche of microorganisms, including plant growth promoters and drivers of biogeochemical cycles.
- Root-soil interactions cover a wide range of biological and physicochemical processes with direct effects on plant growth.
- Root hairs are an important root trait that ensures root-soil contact.
- Approaching the rhizosphere in response to root-soil contact is an important strategy to;
 - ✓ improve crop growth productivity
 - ✓ fulfill global food demand.

This study explored the heterogeneity of the maize root system in response to reduced root-soil contact.

Methods:

- The Zea mays root hairless 3 (rth3) mutant was comparatively studied with its corresponding wild-type for 21 days in a climate chamber(Fig.3).
- Root-soil contact was reduced by artificial soil pores (Fig.2) or the absence of root hairs (*rth3* mutant).
- Determined the influences on:
 - ✓ Root growth and pore utilization (endoscopic analysis)
 - ✓ Shoot nutrient uptake (CHNS analysis and nitric acid digestion followed by flame AAS and ICP-OES analysis)
 - ✓ Microbial abundance (qPCR analysis)
 - Bacteria (16S rRNA)

Fig. 1: The root system of typical wildtype of Zea mays; Adapted from Hochholdinger, 2009.

Results:

 Roots of *Zea mays* wildtype and *rth3* mutant preferentially tend to grow into the artificial pores with different behaviors depending on genotype and root type.

Fig. 4: The endoscopic images of the root growth behavior of *Zea mays* wildtype inside the artificial soil pores (a-f).

Highlights:

- Zea mays wildtype plants show significantly higher shoot and root growth than the *rth3* mutant.
- The root hairs play an important role in improving root-soil contact.
- Root growth behaviors inside the pores largely vary depending on the genotype and the root type.

- Archaea (16S rRNA)
- Nitrifying bacteria (amoA)
- Denitrifiers (*nirK*)

Results:

- Under complete root-soil contact, wildtype plants hosted a significantly higher abundance of bacteria than the *rth3* mutant.
- Both genotypes showed a significant and gradual decrement in bacterial abundance with the reduction of root-soil contact.
- The artificial pore walls harbored a higher abundance of archaea over the bulk soil.

- Plants compensate for reduced root-soil contact by reducing biomass while maintaining nutrient levels in the biomass.
- Root-soil contact largely influences the abundance of bacteria including nitrifiers and denitrifiers.
- Zea mays wildtype plants harbor a higher abundance of bacteria than the root hairless rth3 mutant.
- The abundance of archaea is less responsive to root-soil contact and they prefer the pore walls over the bulk soil.
- (The artificial) pore walls harbor a higher abundance of denitrifiers than the bulk soil, suggesting an anaerobic and nitrate-rich environment on the pore walls.
- Soil pores can play ambiguous roles with either favorable or unfavorable impacts on plant growth.

Fig. 7: Abundance of the 16S rRNA gene of bacteria (a) and archaea (b) under different root-soil contact conditions.

- Both genotypes showed the highest abundance of nitrifying bacteria in the rhizosphere with complete root-soil contact.
- The abundance of both nitrifiers and denitrifiers in both genotypes gradually declined with the reduction of root-soil contact.

Fig. 8: Abundance of nitrifying (*amoA*) bacteria (a) and denitrifiers (*nirk*) (b) under different root-soil contact conditions.

- Fig. 5: Photographic images of growth characteristics of the crown and seminal roots of *Zea mays* wildtype (a & c) and *rth3* mutant (b & d) inside the artificial soil pores.
- Growth of young maize plants was not significantly affected by artificial pores but by the presence or absence of root hairs.

Fig. 6: Height (a) and Dry weight of shoot biomass (b) of *Zea mays* wildtype (Wt) and *rth3* mutant (Mut) at the harvesting point grown in soil with (pore) and without (bulk) the artificial pores.

• Nutrient uptake (except the S) of young maize plants was not significantly

affected by artificial pores.

Nutrient	With pores		Without pores	
	Wt	rth3	Wt	rth3
N (g/kg)	50 ± 1^{a}	49 ± 2^a	47.2 ± 0.4^{a}	50 ± 1^a
C (g/kg)	413 ± 5^{a}	415 ± 2^{a}	$323\pm91^{\texttt{a}}$	415 ± 3^{a}
P (mg/L)	17 ± 5^{a}	15 ± 2^{a}	18 ± 3^{a}	13 ± 3^{a}
\mathbf{K} (mg/L)	172 ± 32^{a}	204 ± 22^{a}	$221\pm42^{\texttt{a}}$	190 ± 39^{a}
Ca (mg/L)	80 ± 25^{a}	60 ± 5^{a}	79 ± 14^{a}	47 ± 11^{a}
Mg (mg/L)	12 ± 3^{a}	11 ± 1^{a}	13 ± 2^{a}	8 ± 2 ª
S (g/kg)	$4.12\pm0.17^{\texttt{a}}$	$3.28\pm0.03^{\texttt{c}}$	$3.24\pm0.12^{\text{b}}$	3.58 ± 0.07^{b}
Al (mg/L)	$0.12\pm0.05^{\text{a}}$	$0.24\pm0.14^{\text{a}}$	0.16 ± 0.08^{a}	$0.23\pm0.08^{\texttt{a}}$
Fe (mg/L)	$1.23\pm0.28^{\texttt{a}}$	$3.18\pm1.03^{\texttt{a}}$	$1.23\pm0.17^{\text{a}}$	$2.19\pm0.43^{\texttt{a}}$
Zn (mg/L)	$0.20\pm0.05^{\text{a}}$	$0.18\pm0.02^{\texttt{a}}$	$0.20\pm0.03^{\texttt{a}}$	$0.17\pm0.04^{\texttt{a}}$

Table 1: Shoot nutrient content of Zea mays wildtype (Wt) and rth3 mutant

(*rth3*) plants grown in soil with and without artificial pores.

Root-soil contact is important for proper plant performance and rhizosphere functions and the plant can (only) compensate to some extent reduced contact.

Acknowledgment:

This study was a part of the "PHENOROB" project conducted by the Institute for Crop Science and Resource Conservation (INRES) at the University of Bonn, Germany. Seeds of *Zea mays* were provided by the Institute of Crop Functional Genomics of Prof. Dr. Frank Hochholdinger.

Institut für Nutzpflanzenwissenschafte und Ressourcenschutz

