

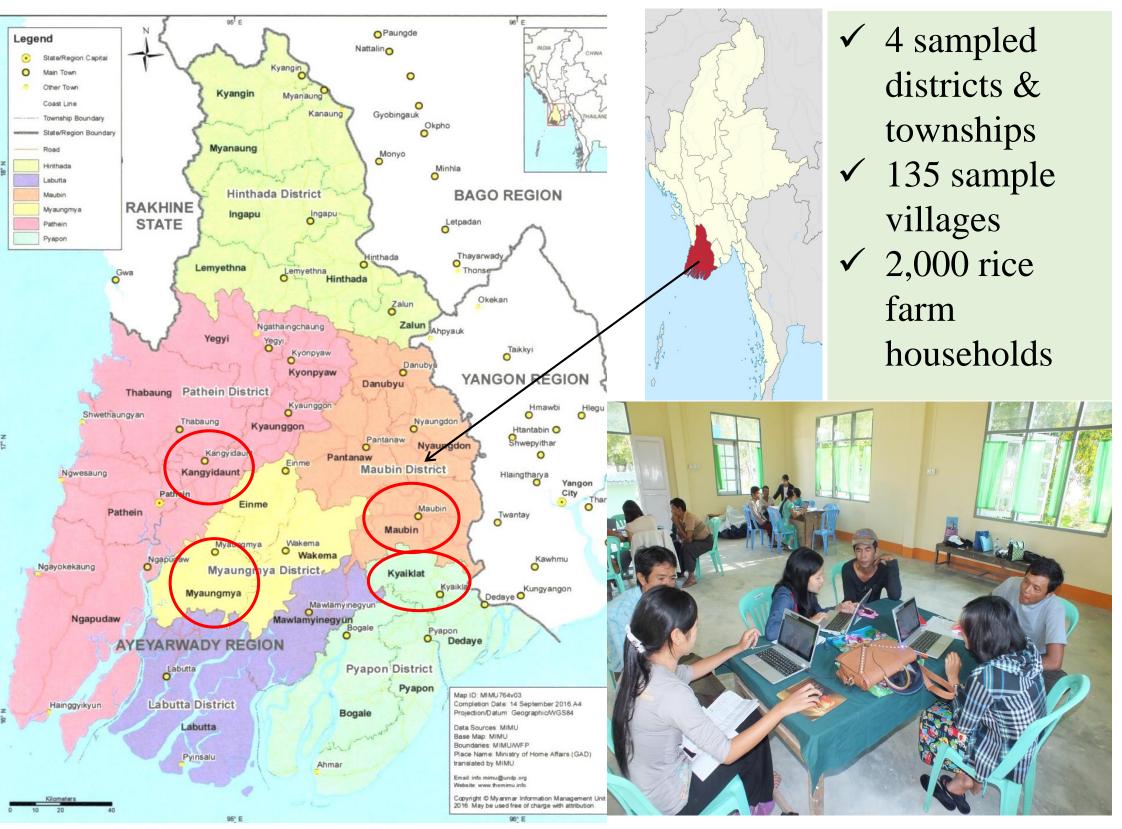
Gender Gap in Rice Productivity: Micro-evidence from Myanmar

Nandar Aye Chan, Orkhan Sariyev, Manfred Zeller

Background

- Achieving gender equality within the agricultural sector is essential for fostering both food security and economic growth.
- In Myanmar, 42.4% of women are employed in the agricultural sector [1], yet they have restricted access to resources [2].
- Rice is vital for Myanmar's food security, economic growth and export earnings.
- Measuring the gender gap in the rice sector and understanding the factors that explain any identified

Data


Data are from the Area-Based Farm Household Survey, collected in October 2014 under the Metrics and Indicators for Tracking in Global Rice Science Partnership project.

Study Area – Ayeyarwady Delta Region

Collaborative survey-

disparities are necessary to develop policy interventions to boost rice output.

Methodology

Kitagawa–Oaxaca–Blinder decomposition approach: Mean gender yield gap $Gap = D = E(Y_M) - E(Y_F)$

 $= \alpha_{m0} + \sum_{w=1}^{W} E(X_{mw}) \beta_{mw} - \alpha_{f0} - \sum_{w=1}^{W} E(X_{fw}) \beta_{fw}.$ D = Endowment Effect = $\sum_{w=1}^{W} \left[E(X_{mw}) - E(X_{fw}) \right] \beta_w^* +$

Male Structural Advantage = $(\alpha_{m0} - \alpha_0^*) + \sum_{w=1}^{W} [E(X_{mw})(\beta_{mw} - \beta_w^*)] +$

Female Structural Disadvantage = $(\alpha_0^* - \alpha_{f0}) + \sum_{w=1}^{W} [E(X_{fw})(\beta_{fw} - \beta_w^*)],$ Where, α_{m0} , α_{f0} , α_0^* , β_{mw} , β_{fw} , β_w^* (w = 1...W) - the estimated intercept, slope coefficients of each variable comprised in the regressions for the male-, female-managed plots and pooled plot samples, respectively.

comprehensive analysis of the gender productivity gap in Myanmar's rice sector to provide a better understanding of the factors that contribute to inequality.

Highlights

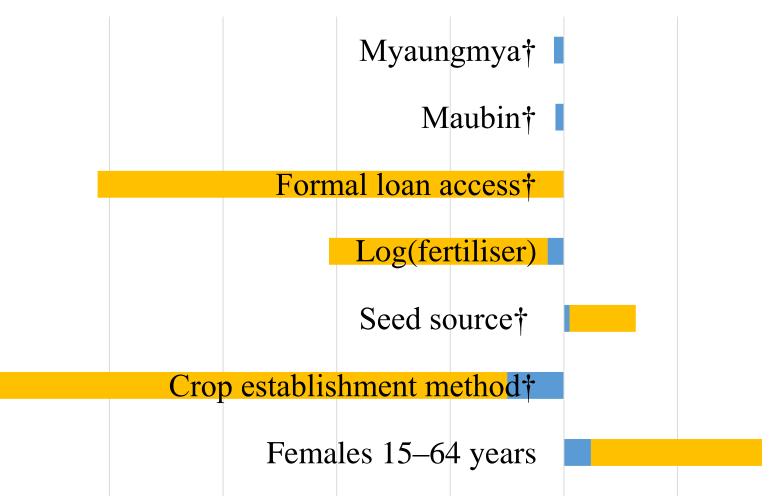
- M We provide new empirical evidence of the gender gap through a micro-regional analysis of rice productivity in Myanmar.
- We find that female-managed plots are 7% less productive than male-managed plots, mainly due to structural effects.
- Seasonality significantly influences this calling for season-specific gap, interventions to meet women's unique needs and challenges.

Source: Myanmar Information Management Unit, 2016

R The dataset allows us to identify the most influential decision-maker for rice production at the plot level.

Results

Table 1. Aggregate decomposition results of the gender gap in summer (dry season) and monsoon (wet season) rice productivity


Table 2. Estimates of monsoon rice productivity within female subgroups at a particular level of marital status

	Male vs	Male vs. Female		Joint vs. Female		Male vs. Joint	
	Dry season	Wet season	Dry season	Wet season	Dry season	Wet season	
Panel (A). Mean gender differen	tial						
Male	8.3982***	7.9329***	8.4407***	7.9188***	8.3982***	7.9329***	
	(0.0081)	(0.0097)	(0.0095)	(0.0142)	(0.0081)	(0.0097)	
Female	8.3703***	7.8620***	8.3703***	7.8620***	8.4407***	7.9188***	
	(0.0367)	(0.0323)	(0.0367)	(0.0323)	(0.0094)	(0.0142)	
Difference	0.0279	0.0709**	0.0704*	0.0569	-0.0425***	0.0141	
	(0.0375)	(0.0337)	(0.0379)	(0.0353)	(0.0124)	(0.0172)	
Panel (B). Aggregate decomposit	ion						
Endowment effect	0.0032	0.0032	0.0108	0.0117	-0.0192***	0.0078	
	(0.0145)	(0.0164)	(0.0168)	(0.0233)	(0.0065)	(0.0092)	
Share of gender differential	11%	5%	15%	21%	45%	56%	
Male structural advantage	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
	(0.0010)	(0.0009)	(0.0031)	(0.0023)	(0.0010)	(0.0012)	
Share of gender differential	0%	0%	0%	0%	0%	0%	
Female structural disadvantage	0.0247	0.0677**	0.0596*	0.0452	-0.0233**	0.0062	
	(0.0340)	(0.0307)	(0.0327)	(0.0343)	(0.0115)	(0.0158)	
Share of gender differential	89%	95%	85%	79%	55%	44%	
Total Observations	1,038	936	509	478	1,355	1,226	
Male	942	842	413	384	942	842	
Female	96	94	96	94	413	384	

Note: Robust standard errors in parentheses. *** p < 0.01, ** p < 0.05 and * p < 0.1.

Variables Deper	Dependent variable: log [rice productivity (kg/ha)]							
Variables	(1)	(2)						
Female and marital status interactions								
Female x married [†]	-0.0993	-0.0916						
	(0.0775)	(0.0709)						
Female x widowed [†]	-0.0953	-0.1079						
	(0.0885)	(0.0800)						
Female x divorced [†]	-0.4109***	-0.3195***						
	(0.1152)	(0.0935)						
Covariates	No	Yes						
Observations	936	936						
R-squared	0.0169	0.2014						

Note: Robust standard errors in parentheses. *** p < 0.01, ** p < 0.05, and * p < 0.1. †The reference groups as non-married, non-widowed, and non-divorced females, respectively.

Conclusions & Recommendations

- Rice production in Myanmar is still characterised by a gender productivity gap.
- Jointly-managed plots are more productive and cooperative, ulletproducing a higher yield than their counterparts.
- Any strategy should concentrate its efforts on this divorced • women subgroup.
- Season-specific interventions are recommended to meet women's unique needs and challenges in different seasons.
- Our findings can help implement future crop-level policy \bullet interventions to empower female farmers, promote gender equality and increase rice productivity in Myanmar.

Nandar Aye Chan, E-Mail: <u>chan.nandar@uni-hohenheim.de</u> University of Hohenheim, Faculty of Agricultural Sciences (Hans-Ruthenberg-Institute), Chair of Rural Development Theory and Policy (490A)

-0.3

		Lo	og(large	est plot size	e)			
		Manager	's educa	ation (years	5)			
-0.25	-0.2	-0.15	-0.1	-0.05 Coefficier	0 nt	0.05	0.1	0.15
Endowment effect		Male structural advantage						
Female	structu	ral disadv	antage					

Fig 1. The main factors that contribute the most to each component of the gap (Male vs. Female) in monsoon season.

References

- 1) ADB (Asian Development Bank). 2018. Detailed Gender Analysis Myanmar: Climate-Friendly Agribusiness Value Chains Sector Project. Manila, Philippines.
- 2) World Bank. 2019. "World Development Indicators." 2019. https://data.worldbank.org/indicator/SL.AGR.EMPL.FE.ZS? locations=MM. Accessed February 7, 2023.