

Nutritional composition of some wild edible plants consumed in Southwest Ethiopia

Abebe Yimer^{1*}, Sirawdink Fikereyesus¹, Getachew Addis², Abebe Ayelgn³

¹Department of Post-Harvest Management, College of Agriculture and Veterinary Medicine, Jimma University, P.O. Box: 307, Jimma, Ethiopia

²Ethiopian Public Health Institute, P.O. Box: 1242 Addis Ababa, Ethiopia

³Center for Food Science and Nutrition, Addis Ababa University P.O. Box:1176, Addis Ababa, Ethiopia

Shutamodoroy

Entut Tuber

Leaves

1. Introduction

• Food and nutrition insecurity is a big problem and it leads undernutrition in

developing country including Ethiopia.

- Wild edible plant diversity and their traditional knowledge exist in Ethiopia Chaw Leaves
- However, nutritional and anti-nutritional composition of wild edible

Results continued.... 3.2 Mineral composition

- Mineral composition of five WEPs were presented in Table 3.2
 - Shutamodoroy leaves showed low in Na and high in Fe and Cu.
 - Entut tuber showed low in K, Ca, Mg and Cu compositions.
 - Gagut contained minimum in Fe, Zn and Cu

- plants(WEPs) is limited in the country.
- Therefore, study aimed to determine nutritional and anti-nutritional composition of some WEPs.

2. Material and Methods

- The study samples were collected from Bench Maji zone, southwest Ethiopia.
- This study was conducted using five WEPs as presented in Table 2.1.
- **Table 2.1** Five wild edible plants widely consumed by Meinit community

Scientific name	Local name	Edible part
Solanum nigrum	Chaw	Leaf
Vigna membranacea	Shutamodoroy	Leaf/seed
Dioscorea praehensilis	Entut	Tuber
Trilepisium madagascariense.	Gagut	Fruit

Cleome gynandra Tikawoch Leaf	
-------------------------------	--

• The nutritional and anti-nutritional composition of WEPs were analyzed

Tikawoch leaves had high in Na, K, Ca, & Mg while this vegetable had low in Cu

Table 3.2. Mineral composition of wild edible plant in mg/100 g (dry weight basis).

WEPs	Na	Κ	Ca	Mg	Fe	Zn	Cu
Chaw	272.1±0.6 ^a	1429.9±14.9 a	241.1±4.0 ^c	207.3±2.6 ^d	26.9±13.1 ^{ba}	3.7±0.0 ^d	0.38±0.0 ^{ba}
Shutamo doroy	174.9±51.5 ^b	802.4±83.0°	322.8±13.6 b	324.9±12.9°	38.5±0.2 ^a	3.9±0.0°	0.5±0.3 ^a
Entut	207.6±2.9 ^b	440.6±13.9 ^d	3.7±0.6 ^e	68.2±5.1 ^e	3.4±0.1°	5.9±0.0 ^a	0.1 ± 0.0^{b}
Gagut	221.0±11.7 ^b a	1185.8±1.4 ^b	57.4±2.3 ^d	374.7±7.8 ^b	0.8± 0.0 ^c	2.4±0.1e	0.1±0.0 ^b
Tikawoch	277.4± 2.8 ^a	1487.8±123. 0 ^a	594.8± 32.9 ^a	588.1±12.5ª	21.7±2.0 ^b	5.5±0.04 ^b	0.1±0.0 ^b
CV(%)	10.3	6.3	6.6	2.9	32.4	0.9	58.6
LSD (p<0.05)	63.7	180.0	43.1	24.6	15.9	0.1	0.3

> Values are the mean of three independent measurements; Values within a column followed by different superscripts are significantly different at p<0.05 level; MC stands for moisture content, and db for dry weight basis

following standard procedures.

3. Results

3.1 Proximate composite

The proximate composition of five WEPs were presented in Table 3.1

- Chaw leaves had high in protein and fiber content but it contained low in carbohydrate(CHO) & energy value.
- Entut tuber had low in Mc, ash, fat ,protein and fiber content but this tuber had high in CHO value.
- Gagut fruit showed rich in MC, fat and energy content while Tikawoch had high in ash value.

Table 3.1. Proximate composition (% on a dry basis) of five selected WEPs (mean \pm SD).

WEPs	MC	Ash	Fat	Protein	Fiber	СНО	Energy
Chaw	6.0 ± 0.6^{b}	14.0±0.4 ^b	4.0±0.6 ^b	21.7±0.9 ^a	22.3±0.4 ^a	38.1±1.2 ^e	275.0±5.9°

CV= coefficient of variation in percent, LSD= least significant difference.

3.3 Anti-nutritional factors

The anti-nutritional factors of WEPs were presented in Table 3.3

Low and high content of phytate & condensed tannin found in Entut tuber and

Tikawoch, respectively.

Chaw had highest in total oxalate content while the lowest content recorded Gagut fruit.

Table 3.3. The phytate, condensed tannin, and total oxalate contents of wild edible plants in mg/100 g.

WEPs	Phytate	Condensed Tannin	Total oxalate
Chaw	233.3±83.7 ^a	260.8±0.6 ^b	443.9 ±10.9 ^a
Shutamodoroy	175.6±32.9 ^b	142.7±1.3°	307.3 ± 70.9^{b}
Entut	8.6±0.9 ^d	5.8±0.6 ^e	64.6 ± 37.6^{d}
Gagut	65.5±10.5°	28.9 ± 0.1^{d}	43.7 ± 0.7^{d}
Tikawoch	307.3±70.9 ^a	329.0 ± 2.6^{a}	205.0 ±11.1 ^c
CV(%)	32.5	0.5	17.1
LSD(p<0.05)	93.5	2.1	66.5

Shutamo 12.6 ± 0.8^{b} 4.3 ± 0.1^{b} 11.8 ± 1.1^{b} 21.1 ± 0.4^{a} 50.3 ± 1.9^{c} 286.6 ± 5.0^{c} 5.9 ± 0.5^{b} doroy

Entut	5.2±0.4 ^b	3.5± 0.1 ^c	0.7±0.1°	4.0±0.5 ^d	8.9± 1.3 ^c	83.0±0.8ª	354.1±5.4 ^b
Gagut	7.9±0.1 ^a	4.9 ±0.3 ^c	6.1±0.1 ^a	6.3±0.6°	10.1+0.6 ^c	72.6±0.8 ^b	371.1±1.6 ^a

Tikawoch	7.1±0.7ª	16.4±0.7 ^a	3.3±0.6 ^b	20.1±0.6ª	18.8+0.8 ^b	41.4±0.5 ^d	276.0±4.5
CV(%)	7.9	6.8	10.7	6.0	4.6	2.0	1.5
LSD	5.1	0.1	0.2	0.6	0.1	3.2	12.7
(p<0.05)							

- > Values are the mean of three independent measurements; Values within a column followed by different superscripts are significantly different at p<0.05 level; MC stands for moisture content, and db for dry weight basis
- CV= coefficient of variation in percent, LSD= least significant difference, MC=moisture **Tikawoch Leaves** *content, CHO = carbohydrate.*

- > Values are the mean of three independent measurements; Values within a column followed by different superscripts are significantly different at p<0.05 level; MC stands for moisture content, and db for dry weight basis
- \succ CV= coefficient of variation in percent, LSD= least significant difference.

4. Conclusions

This study showed that the WEPs had good sources of dietary nutrients for human

consumption.

They contribute to dietary diversification, food and nutrition security in rural

communities of southwest Ethiopia and elsewhere the country.

The study provide a baseline information for food industry, policy makers, and

community nutrition