

How Effective is Your Demo Plot? Feedback From a New "Participatory Demo Plot Appraisal Toolkit"

AUTHORS

Usman Abdullahi Angara, Ferdinand Adu-Baffour, Regina Birner (University of Hohenheim, Germany)

Christogonus K. Daudu (NAERLS, Ahmadu Bello University, Nigeria

Nelson Makange (Sokoine University of Agriculture, Tanzania)

THE CONTEXT: PADePAT, Demonstration Plot and Participatory Appraisal

Background

- A Demonstration (demo) plot plays a key role in the promotion of new farming practices and technologies. However, demo plots do not always lead to adoption.
- To better understand why, we developed the "Participatory Demo Plot Appraisal Toolkit" (PaDePAT) and piloted on the *AAE Project's demos in Tanzania
- The **objective** is to evaluate the **effectiveness of the demonstration plots** in stimulating **adoption** and **challenges** of adopting technology.

ii. What is PaDePAT?

- A novel data collection tool that uses a visual and systematic mapping to allow a joint assessment of agricultural technologies promoted through demonstration plot. A matrix tool designed to assess adoption and compare with farmers' traditional practices.
- ❖ PaDePAT can be seen as a **new tool** in the Participatory Rural Appraisal (PRA) toolbox.

METHODS AND RESULTS

How it Works

MAPPING THE PRODUCTION CYCLE

· IDENTIFYING PROMOTED TECH

showcased in the demonstration plot

· CONTEXTUAL DISCUSSION

implementation

and tools used.

PRACTICES

POTENTIAL

perceived obstacles

Activity: Participants collaboratively outline their typical

agricultural production activities in chronological order

• Activity: Farmers introduce the main technologies

• Activity: For each tech, discuss its application stage

Activity: Engage participants in discussions about

COMPARATIVE ANALYSIS WITH HOUSEHOLD

ASSESSING PERCEPTIONS AND ADOPTION

the technologies, their willingness to adopt, and

Activity: Participants compare demonstration activities

with their household practices using color-coded sticky

seasonal implementation, gender and labor involvement

within the production cycle and the method of

Fig 1: Sample PaDePAT output

Table 1: Sampling procedure and size

COST AND QUANTITY ANALYSIS

adopting the new technologies

CASE A: Dodoma Maize-Sorghum Systems				CASE B: Njombe Potato Farming Systems				
District	No. of Demos Estab.	No. of Group Interv.		District	No. of Demos Estab.	No. of Group Interv.	No. of Participants	
Kongwa	9	8	90*	Njombe DC	13	8	75*	
Chamwino	7	5	49*	Wanging'Ombe	10	4	41*	
TOTAL	16	13	139		23	12	116	
Total Demo Groups Interviewed= 25; Total Participants= 255								

*7 – 15 participants/session, purposively selected based on active demo participation

Fig 2: Farmers group discussions using PaDePAT tool

Preliminary Results

- Higher rate of adoption or willingness to adopt technology among maize/sorghum than potato farming systems.
- ❖ PaDePAT rated 4.4/5 on ease of use by 88% of groups.

Challenges to Adoption:

- Adoption of most technologies comes with extra costs
- ❖ No access and lack of technical skills by *MSPs.
- Lack of **service roads** significantly reduce adoption.
- **Commission fees** charged increase cost of operations borne by farmers.

*MSPs = Mechanization service providers; AAE=African Agri-center of Excellence, a 4-year (2021-2025) consortium project aimed at facilitating the adoption of machinery & GAPs through demo plots.

Fig 3: Technologies promoted - Maize systems Fig 5: Adoption challenges - Maize systems

Table 2: Comparative advantage and further application					
PaDePAT	Other Assessment Tools				
Provides both quanti-&-qualitative	Overemphasis on quantitative survey,				
insights	(extractive & checkbox exercises)				
Formal, systematic & visualized for low-	Most are informal, lack scientific				
literacy context	procedures				
Facilitates co-learning (results are seen	Results can be influenced by who				
and reflect upon)	collects or interprets the data				
Versatile, can be used to assess seasonal					
fluctuations like food shortages, incidence	Context specific, making cross-				
of diseases, etc.	comparison difficult				

3. CONCLUSION

- The demo has successfully triggered farmers' interest on promoted technologies with recorded early adoption. However, costs & access to tech limit adoption.
- The results provide impact pathways for the *AAE project.

Selected reference: Maredia, M. K., Farris, J., Masson, N. M., & Morgan, S. (2025). Does providing free trial packs with demonstration plots increase the adoption of agricultural technologies? Cost effectivess evidence from Tanzania. Agricultural Economics, 2025; 00:1-16. https://doi.org/10.1111/agec.70033

CONTACT

Usman Abdullahi Angara Wolgrassweg 43, 70599 Stuttgart, Germany usmanabdullahi.angara@uni-hohenheim.de