# Improving beekeeping using a landscape approach to maintain ecosystem health, agricultural yield, and promote agroecology



Michael Elias Mgalula: **Corresponding Author Emails:** <u>mgalulamike@yahoo.com</u> & <u>michael.mgalula@udsm.ac.tz</u> *University of Dar es Salaam, Mkwawa University College of Education, Iringa, Tanzania,* P.O. BOX 2513







- Miombo woodlands provide a good habitat for bees among other ecosystems.
- Bees are an integral part of ecosystems and they live less than 40 days but visit 1000 flowers and produce less than a teaspoon of honey.
- They support biodiversity, plant survival, forest regeneration and enhance agricultural production systems.
- Over 80% of our crops rely on bee pollinators.

- Beekeeping or Apiculture is the art and science of maintaining bee colonies, often in artificial beehives.
- Beekeeping provides benefits that go beyond honey production.
- However, the question is, how can beekeeping be mainstreamed in agroecology to increase food production and a healthy environment?







### **Problem and Objectives**

- Given the global decline in pollinator populations, enhancing Apiculture practices is crucial for agroecological principles.
- The specific objective of this study was;
  - i. To assess how the current Apiculture practices reconcile habitat conservation, agroecology, pollination and ecological stability.

#### Methods

- To gain a better understanding of Apiculture practices, a transdisciplinary co-production approach, biophysical measurements and the surveys were conducted with 120 farmers in Tabora Region of Western Tanzania Miombo woodlands.
- Purposive and stratified sampling were used in two districts, Uyui and Sikonge of Tabora region,
   Western Tanzania.
- The data was analyzed via descriptive statistics of IBM SPSS Statistics and DBH was computed.







#### Results

Taught with basic skills

4%

Inherent and learn informally 96%







## Implications of Apiculture practice on healthily ecosystem and pollinators

- 95.8% of beekeepers use conventional hives, 57.9 % made of tree bark and 42.1 % wood logs.
- The removal of tree bark for hive construction leads to deforestation with trees with average DBH of 4.89 are mostly peeled off (Table 1).
- The majority (74.3%) utilize smoke, while a minority (25.7%) employ bush fires to remove bees from hives during honey harvesting.
- Fire and smoke disperse bees, destruct habitats, restrict pollination capability, and result in biodiversity loss.
- Insecticides applied by livestock keepers and pesticides in agriculture displace bees from their natural habitats.





| 9  | N  | Radius | Length (ft) | Length (cm) (x*30.48) | <b>Circumference (cm) (r*2*3.14159)</b> | DBH (cm) |
|----|----|--------|-------------|-----------------------|-----------------------------------------|----------|
|    | 1  | 15.4   | 5           | 152.4                 | 96.76                                   | 4.90     |
|    | 2  | 18     | 4.6         | 140.208               | 113.10                                  | 5.73     |
|    | 3  | 16     | 4           | 121.92                | 100.53                                  | 5.09     |
|    | 4  | 14     | 4.5         | 137.16                | 87.96                                   | 4.46     |
|    | 5  | 14.5   | 5           | 152.4                 | 91.11                                   | 4.62     |
| j  | 6  | 17.2   | 4           | 121.92                | 108.07                                  | 5.47     |
| N. | 7  | 13.6   | 4.5         | 137.16                | 85.45                                   | 4.33     |
| r  | 8  | 17.3   | 3.8         | 115.824               | 108.70                                  | 5.51     |
|    | 9  | 15     | 6           | 182.88                | 94.25                                   | 4.77     |
|    | 10 | 14.6   | 5           | 152.4                 | 91.73                                   | 4.65     |
|    | 11 | 17     | 4.2         | 128.016               | 106.81                                  | 5.41     |
|    | 12 | 16     | 4.5         | 137.16                | 100.53                                  | 5.09     |
|    | 13 | 13     | 5           | 152.4                 | 81.68                                   | 4.14     |
|    | 14 | 15.5   | 4.8         | 146.30                | 97.39                                   | 4.93     |
|    | 15 | 14.7   | 4.9         | 149.35                | 92.36                                   | 4.68     |
|    | 16 | 15     | 5           | 152.4                 | 94.25                                   | 4.77     |
|    | 17 | 15.2   | 5.2         | 158.50                | 95.50                                   | 4.84     |
|    | 18 | 17     | 5           | 152.4                 | 106.81                                  | 5.41     |
|    | 19 | 14     | 5           | 152.4                 | 87.96                                   | 4.46     |
|    | 20 | 14.5   | 4.9         | 149.35                | 91.11                                   | 4.62     |

Table 1. The sizes of Beehives used by the farmers in the study areas (n = 20)

## **Conclusion and recommendation**

- Given Bees are important pollinators and contribute to crop yields and biodiversity; adaptive Apiculture management, such as the landscapes approach, can improve food output, biodiversity, and ecological stability.
- Farmers need to be trained in adapting modern apiculture practices.