Making Geospatial Technology Work From Farm to Policy Scales in West Africa

Stefanie Steinbach¹, Alhassan Lansah Abdulai², Linda Busienei³, Madina Diancoumba⁴, Niklas Heiss⁵, Bashiru Haruna², Tarisai Kanyepi⁶, Jonas Meier⁵, Javier Miranda⁷, Hycenth Tim Ndah⁸, Pierre Sibiry Traoré⁹, Erick Tambo⁷, Sidy Tounkara¹⁰, Frank Thonfeld⁵, Lilian Waithaka³, Valerie Graw¹

¹ Ruhr University Bochum, Institute of Geography, Germany ²Savanna Agricultural Research Institute (SARI), Scientific Support Group, Ghana

³ACRE Africa, Kenya

⁴Leibniz Centre for Agric. Landscape Res. (ZALF), Germany

⁵German Aerospace Center (DLR), German Remote Sensing Data Center (DFD), Germany

⁶UNU-VIE, Germany ⁷University of Bonn, Inst. for Food and Resource Economics (ILR), Germany ⁸University of Hohenheim, Dept. of Communication and Advisory Services in Rural Areas, Germany

⁹Manobi Africa PLC, Senegal

¹⁰Initiative Prospective Agricole et Rurale (IPAR), Senegal

BACKGROUND

Left: Current practice of rice farming (broadcast seeding), right: Resourceefficient rice farming at a farmer field school in Podor, Senegal.

- Sustainable intensification (SI) in West Africa is constrained by fragmented and coarse data
- Geospatial technologies can improve how farmers and institutions manage resources and risks
- Field boundary mapping is relevant for farm management, service provision, and policy support
- Adoption is uneven due to technical, social, and institutional barriers across actors
- Risks remain that digitisation reinforces inequities or farmer dependency if not managed inclusively
- This research maps geodata flows and **bottlenecks** across **farmers and institutions** to understand how geospatial tools can support SI

METHODS

Analytical lens: Technology Acceptance Model (TAM)

- Perceived usefulness, ease of use, behavioural intention¹ / opportunities
- Study sites: Northern Senegal & northern Ghana

Small-scale farmers

- **Workshops**: Participatory mapping using smartphones & GPS
- Focus groups: Farmer experiences & challenges
- Socioeconomic surveys: Demographics, smartphone ownership, adoption of sustainable practices (SRI, ISFM*)

Institutions

- Focus groups: Extension staff, financial & research institutions
- **Expert interviews:** Geodata use, storage, sharing practices

Representation of smallholder realities in large-scale statistics

Large-scale planning & policy

Large-scale geodata: Remote sensing-based agricultural mapping, field boundary data aggregation, and ground validation requirements

*System of Rice Intensification, Integrated Soil Fertility Management

Perceived usefulness: Remote sensing


offers scalable field delineation and crop

monitoring, valuable for subsidy

RESULTS

- Adoption practices: Varied use of agriculture apps with and without geolocation information
- Perceived usefulness: Input planning and labour verification; partly strong interest in geotools, partly mistrust
- Ease of use: Barriers from GPS inaccuracy, language / literacy, digital skills
- Gender dimension: Sharp contrast in smartphone ownership (20% men vs. 3% women in Ghana; N=1001)
- Opportunities: Emergence of "adoption champions" across demographics; inclusion of low-barrier geotools in trainings

Advice, credit, loans, insurance **Verified spatial** information

National targets and standards Large-scale data for finance

Subsidy allocation Land registration / tenure frameworks

The value of

Climate risk & disaster response programs

geospatial technology lies in

how

data, people, and institutions connect and interact

products (e.g. index insurance)

allocation, insurance design, and national planning Ease of use & integration: Effectiveness depends on combining remote sensing outputs with ground data provided by farmers and extension agents

Equity and representation: Risks if smallholder perspectives are not incorporated **Opportunities**: Improve trust and governance issues; transparency in data

handling and sharing required

Tree Cover

Sentinel-2-based field boundary delineation against ESA WorldCover.

Public agricultural agencies / development authorities **Insurance providers** Financial institutions / banks **Research institutions** Private sector / ag-tech companies

- Extension agents as validators: Time / workload constraints
- Perceived usefulness: Insurance verification, subsidy targeting, bank loans
- Ease of use: Institutional bottlenecks regarding training, digitization gaps, and data handling capacity
- Opportunities: Integration of farmer-generated data, workflow efficiency, increased credibility in claims assessment

¹Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. Management Science, 35(8), 982-1003.

CONCLUSIONS & RECOMMENDATIONS

Barriers and enablers across all levels:

Aggregated and validated geodata

Technical assessments / monitoring reports

- → Barriers: (Digital) literacy, gendered access, training deficits, institutional resource constraints, data governance gaps
- > Enablers: Peer learning and digital champions, institutional interest in efficiency, coconstruction of data
- Center farmer perspectives: Geospatial technologies enhance sustainability in West African agriculture when farmers' skills, constraints, and perceived value guide design, use, and training
- **Use hybrid approaches**: Combine farmer-driven mapping with remote sensing to improve accuracy and applicability of geospatial outputs
- Align tools across scales: Ensure institutional and farmer-level tools are compatible

