Rhizosphere Enzyme Activities in Sorghum under Limited Resource Availability in sub-Saharan Africa Nipuna Withanage^{1,2}, Rosepiah Munene^{1,2}, Osman Mustafa², Sara Loftus², Mutez Ahmed³, Dennis Ochuodho⁴, Michaela Dippold¹ ¹ Geo-Biosphere Interactions, University of Tübingen, Germany, ² Biogeochemistry of Agroecosystems, University of Göttingen, Germany, ³ Root-Soil Interaction, Technical University of Munich, Germany, ⁴ School of Biological and Physical Sciences, Jaramogi Oginga Odinga University of Science and Technology, Bondo, Kenya ### Objective Crop production in sub-Saharan Africa faces nutrient limitations under increasing drought Sorghum → Drought-adapted crop with potential for resistance Assess enzyme activities, microbial responses, in sorghum genotypes under drought #### Outcomes Extracellular Enzyme Assay Microbial communities shift with drought + growth stage #### Legend NUtE_{grain}: Nitrogen utilisation efficiency - CANU: Contribution of post anthesis N uptake - LAP: Leucine aminopeptidase - ¹⁵N_{grain}: ¹⁵N recovery in grains NRE: N remobilisation - efficiency NC . N content in - NC_{grain}: N content in grains - Actb: ActinobacteriaGpos1: Gram-positive - Gpos1: Gram-positiveG-2: Gram-negative Phospholipid Fatty Acid Analysis 4:3 Drought changed rhizosphere enzyme activity and microbial communities, with genotype-specific effects on nutrient availability Leucine amino peptidase- Enzyme activities Genotype specific # Plant-microbial Interaction Microbial-suppor Conclusion Microbial-support stabilisation