

Valourising Neglected and Underutilized Crops: Role of Bio-Inoculants in Improving Productivity

Authors / Institutions

Marie Noela Enyoe Olougou^{1,3}, Delphine Mapiemfu Lamare¹, Bettina Eichler-Löbermann², Silke Ruppel³, Christopher Ngosong¹

¹University of Buea, Cameroon

²University of Rostock, Germany

³Leibniz Institute of Vegetable and Ornamental Crops, Germany

IINTRODUCTION

Food/nutrition insecurity in Africa is driven by:

- Low crop diversity
- Dependence on a few staples
- Soil degradation and nutrient depletion
- Pests, diseases, and climate change

Neglected/underutilized crops (NUCs), such as African egg plants:

- Are nutrient-rich and climate-resilient
- Offer sustainable alternatives for food/nutrition security

Their productivity remains low due to:

- Limited agronomic research
- Poor seed systems
- Lack of soil and crop management strategies

Unlocking the potential of NUCs requires:

- Improved bio-based inputs
- Integrated soil fertility and crop health management

RESEARCH OBJECTIVES

- Assess potential of bio-organic inputs to reduce whitefly infestation, enhance eggplant fruit yield, biofortification and shelf-life.
- Assess potential of four edible coatings (*Piper guineense*, neem oil *Azadirachta indica*, honey, and apple cider vinegar) to extend the shelf-life of eggplant fruits.

MATERIALS AND METHODS

• A study was conducted on African eggplant (*Solanum aethiopicum* L.) in Buea Cameroon to improve pre- and post-harvest performances.

Pre-harvest treatment include:

Control = No input, Chemical = NPK and pesticide,
Organic = Poultry manure and *Piper guineense*,
Biological = Beneficial microbes, Integrated =
Combination of Chemical, Organic and Biological

Post-harvest treatment include:

Control = No input, *Piper guineense* extract, neem oil, honey, and apple cider vinegar. Each treatment had four fruits, arranged in complete randomized design (CRD) with no variation in storage environment, and replicated four times.

DISCUSSIONS/CONCLUSIONS

- ✓ Pre-harvest bio-organic amendments mitigated whitefly infestation and improved eggplant fruit yield.
- ✓ Organic and integrated treatments increased the protein content in eggplant fruits, highlighting their nutritional importance.
- ✓ Post-harvest coatings extended the shelf-life of eggplant fruits produced without pre-harvest treatment or with chemical and organic treatments.
- ✓ *Piper* coating extended eggplant fruit shelf-life, regardless of pre-harvest practice.
- ➤ Bio-organic amendments provide a sustainable way to valorize NUCs, contribute to resilient and productive agroecosystems, and promote crop diversification.

ACKNOWLEDGEMENTS

RESULTS

Figure 3: Bio-organic treatments reduced whitefly infestation and severity on eggplant. Bars with different letters for infestation or severity are significantly different (Tukey's HSD, *P*<0.05).

Figure 2: Bio-organic treatments increased protein yield of eggplant fruits. Bars with different letters are significantly different (Tukey's HSD, *P*<0.05),

Figure 1: Bio-organic treatments increased eggplant fruit yield. Bars with different letters are significantly different (Tukey's HSD, *P*<0.05).

Table 1: MANOVA results on level of significance for the interactions between pre- and post-harvest treatments on colour, texture and sensory properties of eggplant fruits. Values are significant at * = P<0.05, ** = P<0.01, and *** = P<0.001; ns = not significant.

		Days of eggplant storage							
Source	Parameters	1	3	5	7	9	11	13	15
Pre-Post-harvest Treatments	Colour		**	ns	ns	*	***	***	**
	Texture	/	ns	ns	*	ns	***	***	***
	Sensory properties	/	*	ns	**	***	***	***	***
Pre-harvest Treatments	Colour	/	***	**	***	***	***	***	***
	Texture	/	ns	*	**	***	***	***	***
	Sensory properties	/	**	**	**	***	***	***	***
Post-harvest Treatments	Colour	/	***	*	*	***	***	***	***
	Texture	/	ns	ns	**	***	***	***	***
	Sensory properties	/	**	ns	***	***	***	***	***

CONTACT

- Dr. Olougou Marie Noela Enyoe, University of Buea
- Email: enyoe.olougou@igzev.de, enyoe.olougou@gmail.com