

Weather-guided late blight management:

Reconciling potato production with environmental health in Rwanda

Benson Kisinga, Elmar Schulte-Geldermann, Benjamin Klauk

OBJECTIVE

Climate change increases weather variability in Rwanda, forcing farmers to rely on routine fungicide applications for late blight (Phytophthora infestans) control, leading to chemical overuse and environmental concerns.

Research Question

Can a real-time weather-guided Decision Support System (DSS) maintain potato yields while significantly reducing fungicide applications and environmental impact in Rwanda's diverse landscapes?

METHODS

System Design:

- > Automated weather stations and LoRaWAN IoT weather sensors
- ➤ SIMCAST Late Blight disease model integration
- > Real-time disease management recommendations based on risk index

Field Trials:

- > On-farm trial across altitude transect: Nyange (1450m) to Kinigi (2400m)
- ➤ 4 potato varieties with varying resistance levels Twihaze (Resistant), Ndamira (Susceptible), Kirundo (Mid Resistant) and Cyerekezo (Mid Resistant)
- Comparison: Weekly Routine vs Weather-guided applications

Fig. On-farm trial altitude transect in Nyange Sector (1450m) to Kinigi Sector (2400m), Musanze District, Rwanda

KEY RESULTS

Fungicide Reduction:

- > 10-90% reduction in applications depending on variety resistance level
- ➤ Susceptible varieties: up to 50% reduction at some locations
- > Resistant varieties achieved maximum savings (up to 6 fewer sprays)

Yield Performance:

- ✓ No significant yield losses under DSS management
- ✓ Variety-specific optimization across altitude gradients

Estimation of Economic Benefits and EIQ

	IN	PUT COSTS	
Input	Rate	Unit Cost	Cost per Ha
Ridomil	2.5 units/ha	30,000 RWF/unit	75,000 RWF/ha
Mancozeb	2.5 units/ha	7,000 RWF/unit	17,500 RWF/ha
Labour	8 units/ha	3,000 RWF/unit	24,000 RWF/ha
	COST SAVINGS BY V	ARIETY & DISEASE PRESSU	JRE
Variety Resistance	Moderate LB Index	Severe LB Index	Sprays Reduced
Susceptible	140,500 RWF/ha	70,250 RWF/ha	1-2 sprays
Moderately Resistant	210,750 RWF/ha	140,500 RWF/ha	2-3 sprays
Resistant	421,500 RWF/ha	210,750 RWF/ha	3-6 sprays
	ENVIRONMENTA	L IMPACT QUOTIENT (EIQ)	
Variety Resistance	Moderate Disease	Severe Disease	EIQ Reduction (%)
	Weekly → Weather	Weekly → Weather	
Susceptible	530 → 398	663 → 582	12-25%
Moderately Resistant	530 → 317	663 → 530	20-40%
Resistant	530 → 133	663 → 368	44-75%

CONCLUSIONS

This research highlights a practical, climate-smart solution that combines real-time data and ecological principles to reduce chemical footprints, support smallholder resilience, and reconcile agricultural productivity with environmental sustainability in vulnerable ecosystems.

Contakt:

Prof. Dr. Schulte-Geldermann E. e.schulte-geldermann@th-bingen.de

Technische Hochschule Bingen Berlinstraße 109 55411 Bingen am Rhein

