Methane emissions of Yankasa sheep fed with

two different dietary concentrate levels

1, 2,3 Lawal Muhammad, 1 Lokman Mohd Azrul, 2 Otaru Sadiku Musa, 1 Muhd Danish Daniel Abdullah, and 1 Abd Wahid Mohd Effendy

¹Universiti Malaysia Terengganu, Kuala Nerus, Malaysia, ²National Animal Production Research Institute, Shika-Zaria, Nigeria, ³Federal College of Education Katsina, Katsina, Nigeria

Introduction:

- Climate change is a global issue
- Ruminants emit methane
- They contribute to climate change
- Nigeria has very large ruminant pop
- Largest small ruminant pop in Africa
- Nigeria recently signed the GMP
- Needs to

 GHGs including CH4
- Also needs to report GHG inventory
- Lack of data on methane emissions
- Lack of measurement tools

Aims:

- To estimate CH4 emission of Yankasa sheep
- To assess the use of high concentrate diet as a CH4 reduction strategy.

Methodology:

- 8 Yankasa weaner rams: 20.08 kg
- Divided into two treatment groups:
- → HCD (50:50 forage to concentrate)
- → LCD (73:27 forage to concentrate)
- Fed for 84 days
- CH4 measured in last week of Exp
- Measurement of methane using:
- → Portable accumulation chamber
- Used two spot sampling protocols:
- → Single spot 1pm
- → Four spots 7am, 1pm, 7pm & 1am
- Sampling replicated twice
- Animals sampled for 30 minutes
- Gas samples pooled & stored in vials
- CH4 conc analysed with SRI GC.

Results:

	D			
Parameters	HCD	LCD	<i>p</i> -values	
Body weight (kg)	30.48 ± 3.01	26.98±4.00	0.040	
Single spot				
DMI (kg)	0.81 ± 0.11	0.68 ± 0.19	0.118	
CH ₄ /Day (g/Day)	29.18±3.66	23.26±3.78	0.009	
${ m CH_4/BW^{0.75}}~(g/kg)$	2.25±0.20	1.99 ± 0.38	0.107	
CH ₄ /DMI (g/Day)	36.22 ± 3.74	36.76 ± 10.70	0.916	
Four spots				
DMI (kg)	1.00 ± 0.12	0.89 ± 0.19	0.203	
CH ₄ /Day (g/Day)	23.84±2.89	20.39±2.09	0.007	
CH ₄ /BW ^{0.75} (g/kg)	$1.84{\pm}0.13$	1.73 ± 0.12	0.113	
CH ₄ /DMI (g/kg)	23.86±1.09	23.55±3.82	0.835	
CH ₄ /ADG (g/kg)	198.48±15.02	272.05±63.41	0.083	

- Higher feed intake in HCD
- Higher weight gain in HCD
- Higher daily CH4 emissions in HCD
 - → mainly due to higher feed intake

Results similar for the two protocols

CH4 intensity lower in HCD

- → higher prod = lower CH4 intensity
- Yankasa CH4/Day = 22.11 g/Day.

Discussion:

Table 2: Methane emissions of African sheep breeds										
Breed	Body						Authors			
	weight	DMI	(CH4/Day	CH4/BW0.75	CH4/DMI				
	(kg)	(kg)		(g/Day)	(g/kg)	(g/kg)				
Djallonke	22.9	0.61		18.9	1.8	30.9	Ouermi et al.,			
							2024			
Maasai	24.8	0.63		14.6	1.3	23.3	Mwangi et			
							al., 2023			
Dorper	26.8	0.66	⊣	17.4	1.5	26.4	Mwangi et			
							al., 2023			
Menz	24.8	1.09		17.8	1.6	16.3	Bekele et al.,			
							2025			
Yankasa	28.73	0.99		22.11	1.8	22.6	This study			

- Yankasa CH4 emissions similar to that of other Africa breeds
- CH4 emissions mainly driven by feed intake & body weight.

Conclusions:

- HCD led to ↑ CH4/Day but also
 ↓ CH4/ADG
- Yankasa CH4/Day = 22.11 g/Day
- PAC can discriminate between dietary treatments
- PAC can be used to estimate daily CH4 emissions.

