Siriki Fané^{1&2}, Deogratias Agbotui¹, Linda Traore³, Mariko Ingold¹, Oumou Sanon³, Eva Schlecht¹, Andreas Buerkert¹

¹Organic Plant Production and Agroecosystems Research in the Tropics and Subtropics (OPATS), University of Kassel, Germany
² Institut Polytechnique Rural de Formation et de Recherche Appliquée (IPR/IFRA) de Katibougou, BP 06 Koulikoro, Mali
³ Institute de l'Environnement et de Recherche Agricoles du (INERA), Département de Production Animales, BP 910, Ouagadougou, Burkina Faso

Introduction

In West Africa's open-parkland systems, farmers apply animal manure (Fig. 1) to improve soil fertility and sustain crop production.

→ We studied decomposition and nutrient release of manure from sheep fed leafs of common woody species in the Sudano-Sahelian zone of Burkina Faso.

Fig. 1. Field application of leaf-derived manure in Burkina Faso

Materials and Methods

Study site: Saria, Burkina Faso.

Treatments: Sheep manure derivatives from *Bombax* costatum *Ficus* sycomorus, *Khaya* senegalensis, and from bush **straw**.

Litterbag technique: 20 × 20 cm² nylon bag with 2 mm mesh size (Fig. 2). Each litterbag filled with 17 g of dry manure(DM)

Sampling time: 2, 4, 8, 16 and 32 weeks after bag burial.

Fig. 2. Leaf-derived sheep manure in litterbag (**A**) and buried litterbag (**B**)

Results

- Initial nitrogen (N) concentration of bush straw and *Ficus* manure was 18% lower (*p*<0.05) than that of *Bombax* manure (Tab. 1).
- Phosphorus (P) concentration in *Ficus* manure was 2-fold higher (*p*<0.05) than in the other manures.

Tab 1. Initial chemical composition (mg g⁻¹) of manure from sheep fed with different tree/shrub leaves and straw

Manure type	N	Р	K	C/N
B. costatum	13.8 ^a	2.8 ^a	2.1 ^{bc}	31.9 ^b
F. sycomorus	11.0°	11.0°	1.4°	26.8c
K. senegalensis	12.4 ^b	2.5 ^{ab}	2.3 ^b	30.7 ^b
Bush straw	11.3 ^c	2.8 ^a	4.6 ^a	37.8ª

Different lowercase letters near means display statistical difference at p<0.05.

- Until week 4, DM loss from straw-derived manure was 97% and 46% higher (p<0.05) than from leaf-derived manures (Fig. 3).
- N release from straw-derived manure until 16 weeks was higher (*p*<0.05) than that of the other manures (Fig. 4A).
- Until week 8, P release from *Bombax* and *Ficus* was 47% and 50% lower (*p*<0.05) than from straw and *Khaya* (Fig. 4B).
- Until week 8, K release from straw and *Khaya* was 1.7- and 1.4- fold higher (*p*<0.01) than from *Bombax* and *Ficus* (Fig. 4C).

Fig. 3. Decay patterns of manure from straw and leaf-fed sheep

Fig. 4. Nitrogen (**A**), P (**B**) and K (**C**) release from manure of sheep fed straw or leaves of woody species

Conclusions

- The quick nutrient release from straw- and Khaya senegalensis- based manure benefits fast crop growth provided that leaching is limited.
- Manures derived from Bombax costatum and Ficus sycomorus are suited to improve longer-term soil fertility.

