=\ UNIVERSITY OF O AED
iy HOHENHEIM

DE DEVELOPPEMENT
1818

BI0STAR (%

Smart control of mechanical oil AUTHORS

Dipl-Ing. Wiomou Joévin Bonzi

pressing using Deep Reinforcement Or.Znangkai Wo

Dr. Sebastian Romuli
L s Prof. Dr. Joachim Mdller
ea rn I n g Institute of Agricultural Engineering,

University of Hohenheim, Germany

. INTRODUCTION

Reliable operation of solar-powered agro-processing equipment in off-grid settings remains a challenge for rural development. This
work present a novel Deep Reinforcement Learning (DRL) controller for a standalone solar powered oil press. (Fig.1)
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Fig. 1: Standalone PV-powered oil press with DRL controller

. METHODS AND RESULTS
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A simulation model of the PV powered oil press was designed (Fig.2) Inputs (time, weather, PV /
@

power, battery SOC)

* DRL agent observed:

RL training
Action :
(press speed)

Hour (h) PV power (W) Battery SOC (%) Average irradiation (W/m?)

Month Press power (W)  Previous action (rpm)
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Environment :
simulation model

Press rotational speeds (0-70 rpm)

« Reward: maximize oll yield, minimize battery cycling & interruptions.
Fig. 2: Deep Reinforcement Learning agent trained in a PV-powered oil press simulation
environment
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. Policy deployed on ESP32 controller and tested on KK20 oil oress Fig. 3: In silico performance of trained agent during sunny (left) and cloudy (right) days
(Fig.4)

* Operation during sunny day

Operationtime: 10 h - 14 h
Seeds processed: 129kg - 126 kg
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Seeds processed: 62kg —  35kg Time (Oct 24.) Time (Oct 24.)
Time

Oil produced : 216 kg - 123 kg
Energy utilization : +61%

I1l. CONCLUSION

The controller improves production time, efficiency, and robustness of off-grid oil pressing. It displays solar and pressing

parameters, and automatically adjusts press speed based on weather conditions. Future work will address seasonal reward shaping
and crop-specific optimization.
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Fig. 5: Experimentation of the control unit on a solar power oil press without controller
(left) and with (right) controller
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