Model-based estimation of methane emissions in Indian cows using seasonal feeding trial data Shahin Alam¹, S.M. Velayudhan², C.A. Bateki¹, S. König² & E. Schlecht¹ ¹ Animal Husbandry in the Tropics and Subtropics, University of Kassel & Georg-August-University Göttingen, Germany # Background - India: home of over 193 million cattle - World's largest milk producer - Major source of enteric methane (EntCH₄) - Respiration chambers: precise but resource-intensive, impractical - Models estimate EntCH₄ using feed data: cost-effective alternative **Aim:** Estimate EntCH₄ emissions from dairy cattle using equation across seasons, breeds and cattle types under tropical farming systems considering dry matter intake (DMI). # Methodology ### Location • Bengaluru, India ## **Period** Year: 2020 - 2022 ## Approach - Measuring DMI for cattle - Total cattle: 441 ### Our model - g EntCH₄/cow/day = $2.82+17.43 \times (kg DMI)$ - $R^2 = 0.78$ - relative prediction error: 9.9% ## **Data analysis** R software (version 4.2.1) # Results There are differences among cattle types and breeds in terms of tropical livestock units (TLU), while DMI/TLU (kg/day) and the R:C ratio (Tab. 1) vary across seasons and cattle types (P < 0.05). **Tab. 1** Tropical livestock units (TLU), dry matter intake (DMI), roughage (R) to concentrate (C) ratio across seasons, cattle, and breed types. | Variables | TLU (n) | DMI/TLU (kg/d) | R:C ratio | |------------------------|-------------------------|--------------------------|--------------------------| | Season | | | | | Monsoon-2020 | 1.54 (143) | 6.69 ^a | 0.83 ^a | | Winter-2021 | 1.55 (147) | 6.93 ^a | 0.38^{b} | | Summer-2022 | 1.51 (151) | 6.22 ^b | 0.37 ^b | | Standard error of mean | 0.02 | 0.13 | 0.04 | | Cattle's | | | | | Milking cows | 1.56° (329) | 6.73 ^a | 0.60 ^a | | Dry cows | 1.51 ^a (96) | 6.33 ^b | 0.32 ^b | | Heifers | 1.26 ^b (16) | 5.82 ^b | 0.23 ^b | | Standard error of mean | 0.04 | 0.18 | 0.03 | | Breed | | | | | Crossbred | 1.52 ^b (113) | 6.74 | 0.61 | | Holstein-Friesian | 1.59 ^a (237) | 6.53 | 0.50 | | Jersey | 1.43 ^c (67) | 6.59 | 0.50 | | Indigenous | 1.33 ^c (24) | 6.91 | 0.46 | | Standard error of mean | 0.03 | 0.17 | 0.06 | Across all cattle types, estimated daily EntCH₄ emission was 118±28 g/TLU. Across seasons, summer showed lower (111±28 g/TLU) emissions than monsoon (119±27 g/TLU) and winter (124±27 g/TLU). Lactating cows showed higher emissions (120±28 g/TLU) than dry cows (113±29 g/TLU) and heifers (104±20 g/TLU) (p<0.05), while there were no significant differences in emissions between breeds (Fig. 2). Fig. 2 Enteric CH₄ emissions across seasons, cattle and breed types. ## Highlights - There are - Seasonal and physiological variations in emissions - ⊕ Effective, scalable model-based EntCH₄ quantification is possible - Mitigation opportunities for tropical dairy systems can be identified ² Animal Breeding & Genetics, Justus Liebig University Gießen, Germany