Using a Laser Methane Detector® To Assess Enteric Methane Emissions from Indigenous Indian Dairy Breeds

¹Kwamboka Tirimba, ²Thanammal Ravichandran and ³Mizeck. G. G. Chagunda

¹Animal Breeding and Husbandry in the Tropics and Subtropics, University of Hohenheim, Stuttgart, Germany

²Kumaraguru College of Liberal Arts and Science (KCLAS), Coimbatore, Tamil Nadu, India

³Centre for Tropical Livestock Genetics and Health, The Roslin Institute, Easter Bush Campus, The University of Edinburgh, United Kingdom

Tropentag 2025

Introduction

- Enteric methane (CH_4) is produced by ruminate animals, during feed digestion in the rumen.
- Enteric CH_{Δ} is a major source of greenhouse gas (GHG) emissions from livestock, especially dairy cattle.
- Dairying in India contributes about 27% of the agricultural gross domestic product (GDP).

Tharpakar Breed

Gir Breed

Kankrej Breed

Justification and Objective

- Indigenous breeds in India are key in dairy production.
- Determining the impact of indigenous breeds on GHGs is vital in improving breed efficiency.
- The study was conducted to determine differences in CH₄ concentrations among Indian indigenous breeds

Methodology

- Study conducted in a dairy commercial farm in Coimbatore, Tamil Nadu, India.
- Twenty dairy cattle from breeds Tharpakar, Kankrej and Gir were selected using randomised block design.
- All animals were on a similar diet with body weights between 210 471 (SD, 90.01) kgs.
- CH₄ was measured from selected animals, at a 1-metre distance, using a Laser Methane Detector (LMD).

The Laser Methane Detector (left). The LMD on farm, measuring enteric methane directly from dairy cattle (right)

- Measurements were taken for 6 minutes per animal, twice daily after feeding, over six consecutive days.
- Analysis conducted with Linear Mixed Effects (LME) model with CH₄ as dependent factor, breed, animal weight, age and lactation as independent factors.
- Individual animals were the grouping factor.

Results

- Animal weight showed a significant effect (p < 0.05) on CH₄.
- This indicates biological variation at individual animal level, probably attributed to genetic or physiological reasons.
- No significant effect (p > 0.05) of breeds, age and lactation on CH_4 .
- Estimated marginal means (emmeans) of CH₄ concentrations varied among breeds but were not significantly different.

Emmeans of methane concentrations (ppm-m) across breeds

Indigenous Breed	Emmeans (SD) of CH ₄ concentrations
Kankrej	129.96 (23.95) a
Tharpakar	164.64 (38.55) a
Gir	203.09 (32.73) a

SD = Standard Deviation from the mean. Same letter superscript describe methane means as not significantly different.

Conclusion

- Among indigenous breeds of India, individual animal parameters rather than breed differences are likely to have an influence on enteric methane concentrations.
- Mitigation strategies on enteric methane would focus on individual animal level rather than breed level.

