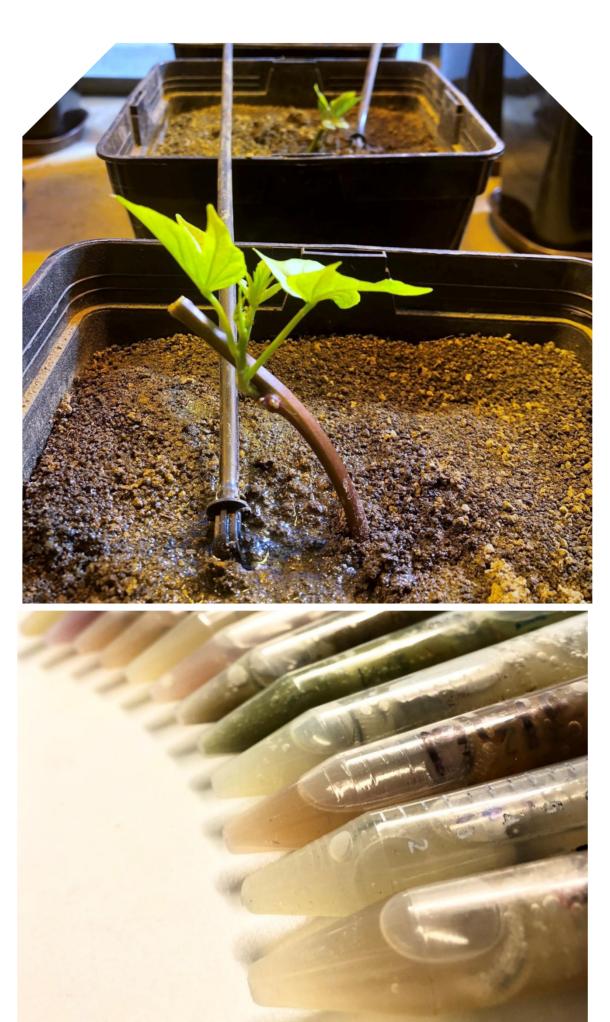

Commissioned by the German Federal Ministry for Economic Cooperation and Development (BMZ) and carried out by ATSAF e.V. on behalf of the Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH.

Effects of potassium source on sweetpotato irrigated with saline water


Johanna Volk^{1,3}, Jakub Abelard Pospíšil², Maria Isabel Andrade³, Folkard Asch¹

¹University of Hohenheim, Inst. for Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute), Germany ²Czech University of Life Sciences, Institute of Tropical AgriSciences, Department of Crop Science and Agroforestry, Czech Republic ³International Potato Center, Flagship 2- Adapted Productive Varieties and Quality Seed, Mozambique

Introduction

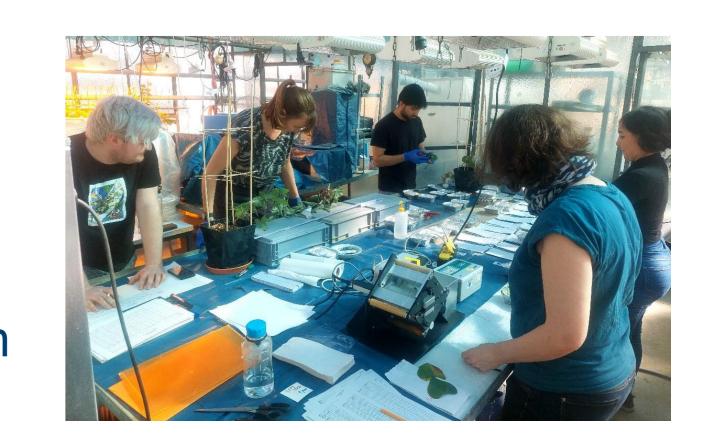
- Maintaining high shoot potassium concentration is beneficial for salinity tolerance.
- Adding potassium (K) in different chemical forms (sources) might mitigate salt stress.
- Effects of potassium sources on sweetpotato grown under salinity not yet described.

Conclusions

- Potassium sources had different effects on the two sweetpotato varieties grown under salinity.
- K₂SO₄ and KH₂PO₄ were most beneficial for CIP1.8 and CIP2.1 respectively in terms of biomass and root-shoot ratio increase.
- All K sources increased K concentrations in middle section* leaves and leaf petioles of both varieties, suggesting enhanced phloem loading and sugar translocation.
- Choosing the matching K source per genotype can enhance biomass and its distribution.

Results and Discussion KH2PO4 K2S04 no K 20 20 -24 -12 24 50 30 10 30 70 Total shoot dry weight (DW) g Shoot potassium concentration mg/g DW Petioles middle section K conc. mg/g DW* KH2PO4 CIP18915**1.8** K2S04 CIP18800**2.1 KCI** no K 1.4 0.7 1.4 **Shoot K/Na ratio Root-shoot ratio** Leaves middle section K conc. mg/g DW*

- → DW increase with all three potassium sources in CIP1.8, increase only with K₂SO₄ in CIP2.1.
- → Increase in root-shoot ratio with K₂SO₄ and KH₂PO₄ in CIP1.8 and in CIP2.1, respectively.
- → Decrease of K concentration with all K sources in CIP1.8, increase under all in CIP2.1.
- → Increase of K/Na ratio with KCl in CIP 1.8, with KCl and KH₂PO₄ in CIP 2.1.
- → Strongest increase with KCl in CIP1.8.
- → Increase in petiole K concentration under all sources in both varieties, except with KH₂PO₄ in CIP2.1.
- → Increase in leaf K concentration with all three sources in both varieties.
- → Strongest increase with K₂SO₄ in CIP2.1.


Biomass

Shoot K & Na concentration

Plant part K concentration

Materials and Methods

Experimental set-up: Split-Plot designed greenhouse pot trial run in 2025 at the University of Hohenheim. **Treatments**: Irrigation (Freshwater, Saltwater - 150 mM), Variety (CIP189151.8, CIP188002.1), Potassium (no K, KCl, K₂SO₄, KH₂PO₄ - 60kg/ha K); Salinity and potassium treatment onset 31 days after planting; n=4. **Sampling**: Shoot, fibrous and storage roots harvested destructively at 58 days after transplanting; *middle section is the part of the vine that was established between 28 and 44 days after transplanting. **Laboratory analyses**: Dry weight after 48 hours at 70°C; Shoot biomass: concentration of sodium and potassium by hot water pressure extraction via autoclave and flame photometer measurement according to *Asch et al. 2022*.

