Examining the Adoption of Agricultural Drones Among Pakistani Farmers: A Modified Technology Acceptance Model <u>Muhammad Ahmed¹</u>, Miroslava Bavorova¹ ¹Faculty of Tropical Agrisciences, Czech University of Life Sciences, Prague # Introduction - > Pakistani farmers are slow to adopt agricultural drone technology due to insufficient knowledge, high costs, and environmental issues. - > Technology-based solutions are needed to overcome manual farming practices, which are time-consuming and laborious. - > Previous studies on agricultural drones emphasize their applications and significance in agribusiness. - > This study analyzed factors hindering drone adoption, providing insights for policymakers, researchers, and industry stakeholders to develop targeted interventions. # **Objective** > To assess the factors impacting agricultural drone technology adoption Figure 3. Study Area in Pakistan # Methodology - This study used the Modified Technology Acceptance Model (MTAM). - 130 farmers using drone services were selected using a purposive sampling technique - The study area for this research was District RYK in Pakistan; the local farmers of this district were the target population. - Data was collected using the cross-sectional, closeended survey questionnaire adopted from the previous studies - Observation to estimate the parameters (N:q) ratio is used for calculating the sample size for SEM 7:1 (7x19 = $133 \approx 130$ proposed by Hair et al. (2019). - Smart PLS-SEM was used to identify the factors that affect drone adoption, and all items were measured on a 5-point Likert scale. | Result Demonstrability O.109 (1.684) Result Demonstrability O.109 (1.684) Behavioral Intention to Adopt ADT | 0.816 (0.000) Subjective Norms SN5 PU1 0.879 (0.000) 0.609 (0.004) 0.506 0.826 (0.000) 0.507 (0.000) 0.826 (0.000) | |---|---| | Perceived Cost gure 1. Conceptual Framework Adapted from TAM (Davis, 1989) | PC1 0.805 (0.000) PC2 0.868 (0.000) 0.828 (0.000) PC3 Perceived Cost Figure 4. Structural Model | | . No. Constructs Number of Items Scale References Nature of Data | | 0.792 (0.000) 0.770 (0.000) 0.764 (0.000) | S. No. | Constructs | Number of Items | Scale | References | Nature of Data | | | |------------------------------------|-------------------------|-----------------|----------------|-----------------------------|----------------|---------------------------------------|--| | Dependent Variable | | | | | | | | | 1. | Behavioral Intention | 3 | 5 Point Likert | Davis (1989) | Continuous | | | | Independent Variable(s) | | | | | | | | | 1. | Subjective Norm | 5 | 5 Point Likert | Taylor and Todd
(1995) | Continuous | | | | 1. | Results Demonstrability | 4 | 5 Point Likert | More and Benbasat
(1991) | Continuous | | | | 1. | Perceived Cost | 3 | 5 Point Likert | Lee and Kozar (2008) | Continuous | | | | Independent and Mediating Variable | | | | | | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | | | 1. | Perceived Usefulness | 4 | 5 Point Likert | Davis 1989 | Continuous | | | #### Results - The study found a significant positive effect of RD on BI, with β = 0.109, indicating that an increase in RD leads to an increase in BI. - The study found a significant positive effect of PU on BI, with $\beta = 0.543$. - The study found a significant positive effect of SN on BI, with $\beta = 0.376$. - The study found a significant negative impact of PC on BI, with β = -0.111, indicating that a decrease in PC leads to an increase in BI. - > The study found a positive and significant mediation of PU between SN and BI with $\beta = 0.376$. ### **Conclusion and recommendation** - ➤ Drone companies can enhance the subjective norms (SN) of farmers by fostering local influences and encouraging them to utilize their services. - > Drone companies can arrange events like field trials, workshops, or exhibitions to effectively highlight the benefits and outcomes of agricultural drones. - Farmers perceive agricultural drones as costly. Companies can organize seminars and awareness campaigns to reduce this notion. #### Figure 2. Study Constructs #### **Acknowledgement:**