Comparing phenotyping systems for salinity tolerance in Quinoa (*Chenopodium quinoa*) across phenological stages

ANNA TABEA MENGEN, SANDRA M. SCHMÖCKEL

<u>University of Hohenheim, Institute of Crop Sciences, Dept. Physiology of Yield Stability, Stuttgart, Germany</u>

BACKGROUND

- Globally increased pressure of soil salinity in agriculture
- Diversify cropping systems with salt tolerant crops like quinoa to increase productivity in marginal environments
- → Need for reliable phenotyping systems to identify salt tolerant accessions

HYDROPONICS VS. GREENHOUSE (SOIL)

HYDROPONIC SCREENING

14 days NaCl treatment

300mM from 6-leaf stage

→ Sampling & harvest

→ Main index: Biomass

Traits assessed
Na+, K+, K+/Na+-ratio
water content,
stomatal conductance,
osmolality

Salt Tolerance Index
=
Trait_{salt}/Trait_{control}

GREENHOUSE SCREENING

14 days NaCl treatment
400mM from 10-leaf stage

→ Sampling

→ Harvest at maturity

→ Main index: Single Plant Yield

Correlation of salt tolerance indices across traits

Biomass maintenance vs. single plant yield as a salt tolerance index

A 2.0 1.5 1.5 0.5 0.5-

Related indices between experiments

and experimental systems

Biomass (HP) vs. Seed Yield (GH, Soil) -0.1
Biomass (HP) vs. Biomass (GH,Soil) -0.3
K+ content 0.1
Na+ content -0.1
K+/Na+ ratio 0.5
Water content 0
Osmolality 0.1
Stomatal conductance 0.6

Table 1 **Correlation coefficients** for salt tolerance indices of different traits **between experimental systems**

- Biomass index and seed yield index are not significantly correlated
- lon related traits do not seem to influence biomass or seed yield indices
- Stomatal conductance index positively correlated between experiments

- Accessions with the highest Salt Tolerance Index in the hydroponic system tend to have low biomass under control conditions → may not be desired for breeding
- High Salt Tolerance Index for seed yield in the soil based system is associated with stable and high performance in both conditions → candidate accessions for breeding

CONCLUSIONS AND OUTLOOK

- Different experimental settings conclude in different rankings for tolerance indices of the same trait
- Selecting based on seed maintenance or biomass maintenance will result in different accessions declared as "tolerant"
- Stomatal conductance as a potential trait for indirect selection
- Transfer of results from lab and greenhouse to the field has to be treated carefully

Fig.3 **PCA biplot** of salt tolerance indices per trait and accession in different experimental systems. HP = Hydroponics, GH = greenhouse (soil based pot experiment)

ACKNOWLEDGEMENTS