

Impact of abiotic stress on grain yield, antioxidant activity, and nutritional quality of black rice

Aung Zaw Oo1, Hidetoshi Asai1, Hiroshi Ikeura1, Junichiro Marui1, Toshiyuki Takai1, Khin Thuzar Win2 ¹Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba, Ibaraki 3058686, Japan ²Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba 305-8602, Japan

Introduction

- Abiotic stresses pose significant challenges to crop growth, yield, and nutritional quality.
- > Black rice, renowned for its high antioxidant content, is particularly vulnerable to abiotic stresses, which can affect both grain quality and antioxidant activity
- > This study examines the effects of salinity, water and temperature stresses on grain yield, antioxidant compounds (flavonoids and phenolics), phytic acid content, and grain color appearance.

Materials and methods

Pot experiment 1

Salt stress (dS m⁻¹)

Pot experiment 2

Black rice varieties

- Asamurasaki,
- Minenomurasaki, and
- > Etsunanmochi191

Water management

- continuous flooding (CF)
- > alternate wetting and drying (AWD)
- > aerobic rice system (ARS)

Temperature treatment

- Normal temperature
- > Elevated temperature

Results

Pot experiment 1

Fig. 1 Salt stress on rice grain yield.

Under salt stress, both rice varieties

decreased rice yield, but with less

reduction under moderate stress: (Fig. 1).

Total phenolic (mg GAE g⁻¹) **■** S0 10 **S**3 8 **■** S6 **S**9 c bc 6 ■ S12

Fig. 2 Salt stress on grain antioxidant. Gallic acid equivalents (GAE)

White rice

Moderate

Grain visual quality

Fig. 3 Black rice grains become darker under salt stress

Salt stress increases phenolic content in black rice but does not affect white rice. (Fig. 2)

Black rice

A trade-off between grain yield and grain color stability was observed: an increase in salinity level, an improvement in grain color, but a low yield. (Fig. 3)

Pot experiment 2

Fig. 4 Grain yield and PA correlation.

> Aerobic rice maintained high yield while reducing PA content in Minenomurasaki (Fig. 4)

Fig. 5 Grain anthocyanin content.

Aerobic rice increased anthocyanin content, but elevated temperature negatively affected (Fig. 5)

Fig. 6 Grain anthocyanin content of variety Minenomurasaki.

> Aerobic rice improved grain color stability even under elevated temperature conditions (Fig. 6)

Conclusions

- > A trade-off relationship between grain yield and quality in black rice under abiotic stress.
- > Salt stress enhanced grain anthocyanin and improved grain appearance, while temperature stress had a negative effect.
- > Black rice grown under the aerobic rice system not only maintains grain yield but also increases anthocyanin and reduces PA content.
- > Effective exploitation of abiotic stress will be key to balancing grain yield and nutritional quality of black rice.

Acknowledgements