

Tropentag, September 10-12, 2025, hybrid conference

"Reconcile land system changes with planetary health"

Virtual fencing: An advanced solution for sustainable livestock-grazing systems in sub-saharan africa?

SALA LAMEGA¹, NATASCHA GRINNELL², ERIC TIMPONG-JONES³, KINGSLEY AYISI⁴, FREDERICKE RIESCH⁵, DELADEM FIANKOR⁶, MARTIN KOMAINDA⁷, JOHANNES ISSELSTEIN⁸

¹Georg-August University Göttingen, Depatment of Crop Sciences, Grassland Science, Germany ²Monil, Norway,

³University of Ghana, Livestock and Poultry Research Centre,

⁴University of Limpopo, Risk and Vulnerability Science Centre, South Africa

⁵Georg-August University Göttingen, Dept. of Crop Sciences, Grassland Science, Germany

⁶Georg August University of Göttingen, Agricultural Economics and Rural Development, Food Economics and Policy, Germany

⁷Georg-August University Göttingen, Department of Crop Sciences, Grassland Sciences, Germany

⁸Georg-August University Göttingen, Dept. of Crop Sciences, Grassland Science, Germany

Abstract

The fast-growing population in Sub-Saharan Africa (SSA), coupled with an increasing preference for meat-based diets, demands rapid action to enhance grazing systems for sustainable livestock production. However, climate change and intensifying land use are depleting natural rangelands, threatening the sustainability of livestock production. A critical challenge is the overexploitation of communal grazing resources, which exacerbates resource degradation.

To mitigate climate risks and resource overuse, cross-border pastoralism, particularly in many parts of SSA, is an important strategy. Yet, it often faces mismanagement and conflicts. Traditional fencing to manage and conserve rangelands has had limited success due to its labor-intensive nature and high costs. Consequently, there is a pressing need for technology-driven solutions that address the ecological, social, and economic complexities of SSA's grazing systems.

An innovative but unpopular approach in SSA's livestock-rangeland context is smart livestock farming technology, specifically virtual fencing (VF) (e.g., Monil: https://monil.co.uk). In VF, the animals are fitted with collars that are equipped with sound and mild electrical stimuli. The collar is connected to a smartphone, which enables the user to identify a virtual border for grazing. These collars also monitor animal behaviours—such as walking, resting, and grazing—along with health and welfare parameters, and, to some extent, pasture intake. This IT-based solution could enable flexible, precise, and sustainable communal grazing, offering a framework to improve livestock-rangeland systems in SSA.

Currently, there is little to no research explicitly testing VF in SSA's rangeland-grazing systems. The objectives considered in this study include reviewing results from experiments and experiences from temperate climates, and discussing the potential opportunities and limitations of VF utilisation in SSA rangeland-grazing systems. This method is useful to design urgently needed VF-based grazing studies for SSA.

Contact Address: Sala Lamega, Georg-August University Göttingen, Depatment of Crop Sciences, Grassland Science, Von-Siebold-Str 8, 37075 Göttingen, Germany, e-mail: sala.lamega@uni-goettingen.de

Keywords: Africa, livestock-rangeland systems, smart grazing, virtual Fencing