

THE EFFECT OF ALGAL BIOMASS SUPLEMENTATION ON THE PERFORMANCE AND WELFARE OF RABIT DOES AND KITS

Oluwagbemiga Adeleye ¹ Iyanuoluwa Fajenyo ¹, Ibiyemi Opowoye ^{1,2}, Lawrence Egbeyale ¹
Department of Animal Production and Health, Federal University of Agriculture, Abeokuta

Institute of Food Security, Environmental Resources and Agricultural Research, Federal University of Agriculture, Abeokuta

Corresponding author adeleyeoo@funaab.edu.ng

INTRODUCTION

 One of challenges confronting rabbit production is mortality of rabbit kits most especially at birth

- o Several efforts have been made to increase the survival rate of young livestock most especially prolific animals such as pig and rabbit.
- One of the efforts made is the supplementation of maternal diets with polyunsaturated fatty acid DHA.
- Studies have reported algal biomass (DHA) has been able to improve the survivability of young livestock animals (Egbeyale et al., 2016)
- > Edwards (2002) revealed that long chain fatty acid (DHA) had been crucial to the survival of neonates through the development of brain, eye and neural tissue function
- > Adeleye (2012) also reported that the dietary inclusion of algal biomass (DHA) increased farrowing duration and also improved vitality of piglets.
- However, there is dearth of information on the influence of supplementation of rabbit feed with algal biomass rich in (DHA gold) on survivability of rabbit kits.
- Hence, this research aimed to investigate the effects of algal biomass supplementation on the performance and welfare of rabbit does and kit survival

METHODOLOGY

- Experimental site: Rabbitary unit of the College of Animal Science and Livestock Production, Federal University of Agriculture, Abeokuta, Nigeria
- o Test ingredient: Algal biomass docosahexaenoic acid (DHA gold).

o Sample size: Twenty does mixed breed (Chinchilia, new zealand

white) with an average weight of 1.8kg.

- Hand mating (1 buck: 5 does).
- The Does were randomly divided into four treatments and five replicates

Treatment	Level of inclusion
1	0 %
2	0.5 %
3	1 %
4	1.5 %

 A commercial rabbit concentrate feed (Grower mash) from a known feed company was fed to the rabbits.

- > The Experiment lasted (8) eight weeks (Four weeks of gestation to four weeks after parturition).
- > Growth, reproductive and behavioural parameters were monitored
- > Haematological parameters , serum biochemical profiles were
- Data collected was analyzed using one way analysis of variance . Tukey test was used to separate the means. (SAS, 2002)

RESULTS

Table 1: Effects of algal biomass supplemented diets on Reproductive performance of rabbit does

Level (%) of algal biomass								
Parameters	0	0.5	1.0	1.5	SEM	P-Value		
Initial weight(Kg)	2.01	1.97	2.03	2.01	0.92	0.99		
Conception (%)	46.67	60.00	70.00	80.00	9.07	0.64		
Gestation Period (days)	31.33	33.00	31.33	31.33	0.43	0.47		
Litter size	5.67 ^{ab}	5.33ab	5.00 ^b	7.33*	0.34	0.04		
Kit Weight (g)	45.63 ^b	37.33	45.33 ^b	50.59a	1.60	0.04		
Daily Feed intake (g)	89.08	94.39	115.64	102.84	5.95	0.47		
Kindling Period (s)	9.00	9.00	9.33	11.67	0.58	0.32		
Survivability (%)	40.95	43.33	50.00	61.31	9.92	0.92		

Table 2: Effects of algal biomass supplemented diets on Haematological of rabbit does

No. 10		Level (%) of algal biomass				
Parameters	0	0.5	1.0	1.5	SEM	P-Value
Pack Cell Volume (%)	26.67	33.33	35.33	29.67	1.73	1.38
White Blood Cell(x10 ⁶ /mm ²)	4.30	10.83	5.55	9.50	1.45	1.22
Red Blood Cell (x10 ⁶ /mm ²)	3.13	3.63	4.03	5.90	0.58	1.13
Lymphocytes(%)	54.33	41.33	44.67	41.00	3.31	0.85
Neutrophil(%)	34.67	51.33	44.67	51.33	3.68	1.21
Monocytes(%)	7.67	5.33	5.67	3.67	0.74	1.33
Basophil(%)	3.67	2.00	1.67	4.00	0.52	1.41
Haemoglobin (g/dl)	9.33	10.00	11.67	9.67	0.61340	0.64
MCV(fl)	85.00	87.00	85.67	81.67	1.46	0.52
MCH (pg)	30.33	26.67	27.33	31.33	0.86	2.34
MCHC(g/dl)	31.67	31.67	32.67	30.67	0.63	0. 34

Table 3: Effects of algal biomass supplemented diets on Serum biochemical $\;$ parameters of rabbit does

	Le	vel (%) of alş	gal biomass			
Parameters	0	0.5	1.0	1.5	SEM	P-Value
Total Protein (g/l)	6.37	5.40	7.53	5.90	0.41	1.32
Albumin (g/l)	3.70	3.97	5.17	4.17	0.35	0.81
Globulin (g/l)	2.67	1.43	2.37	1.73	0.22	2.06
Alanine aminotransferase (U/l)	45.00	34.00	37.00	45.33	6.48	0.15
Aspartate aminotransferase (U/l)	54.33	35.33	62.33	57.00	8.43	0.41
Glucose (mg/dl)	70.00	52.33	64.00	42.33	4.76	2.24
Urea (mg/dl)	26.00	26.67	27.00	29.33	2.15	0.09
Creatinine (mg/dl)	0.87	1.00	1.33	1.00	0.19	0.20
Platelets (10 ⁵ ml)	1.89	1.44	1.38	1.94	0.34	0.14

Table 4: Effects of algal biomass supplemented diets on birth interval, and vitality of kits of rabbit does

Level (%) of algal biomass									
•									
Parameters	0	0.5	1.0	1.5	SEM	P-Value			
Avg Number of kits	4.000	3.923	3.000	5.4000	0.741	0.791			
Birth Interval	1.571	1.846	1.400	1.800	0.256	0.622			
Latency to Stand(min)	3.429	3.462	2.600	2.700	0.424	0.313			
Latency to Teat(min)	21.710	29.1542	23.400 ^b	21.000b	1.048	0.000			
Latency to Suckle(min)	34.572	32.076 ^b	25.800 ^{bc}	23.500°	1.048	0.000			

Table 5: Effects of Algal biomass supplemented diets on behavior of Rabbit does

Level of algal biomass (%)								
Parameters	0	0.5	1.0	1.5	SEM	P-Value		
(Frequency of								
occurrence)								
Feeding	66.71 ^{bc}	67.64 ^b	61.29 ^c	77.002	1.65	0.000		
Drinking	62.71ab	60.07 ^b	60.79 ^b	67.64 ^a	1.55	0.005		
Lying position LR	52.432	45.36 ^b	34.45 ^d	39.86 ^c	1.17	0.000		
Lying position LL	63.29ª	42.79 ^b	45.57 ⁶	39.00°	2.13	0.000		
Belly Sitting	72.21	68.50	71.21	67.50	2.34	0.446		
Grooming	59.71°	64.93 ^b	76.36*	75.07 ^a	1.13	0.000		
Pulling of Fur	46.14	52.57	45.93	61.57	7.03	0.360		
Ear Scratching	21.14	17.93	23.00	31.64	0.70	0.345		

Graph showing the effect of algal biomass supplementation on vitality of kits of rabbit does 35 30 25 20 15 10 5 0 Latency to stand Latency to teat Latency to suckle

CONCLUSION

- Results revealed that rabbit does supplemented with 1.5% algal biomass exhibited significantly higher kit weight, higher litter size and vital kits.
- These findings suggest that algal biomass supplementation positively impact both performance and welfare of rabbit does including the kits survival

ACKNOWLEDGMENT

- o The team appreciates the Tertiary Education Fund (TETFund) Board in Nigeria for the grant released for the execution of this project.
- The effort of the Management of the Federal University of Agriculture, Abeokuta, Nigeria, is highly acknowledged.
- ${\bf o}$. We also appreciate DSM Animal Nutrition and Health Netherlands for the supply of the DHA gold (G) algal biomass.
- o Professor Sandra. A Edwards Newcastle University United Kingdom

REFERENCES

- o Adeleye, O. O. 2012. Enhancing piglet survival and welfare in different farrowing systems thesis submitted for the degree of Doctor of Philosophy (Ph.D) School of Agriculture, Food and Rural Development Newcastle University September.
- o Ajala, M. K. and Balogun, J. K. 2004. Economics of rabbit production in Zaria, Kaduna State. *Tropical Journal of Animal. Science*. 7(1): 1-10
- Edwards, S. A. 2002. 'Perinatal mortality in the pig: environmental or physiological solutions', Livestock Production Science, 78, (1), pp. 3-12.
- o Egbeyale l.T , Sogunle O.M , Adeleye O.O, Alagbe A.R , Sowande O.S, Edwards S.A 2016 "Reproductive performance of two breed of rabbit does fed diet containing algal biomass" proc, for animal produ. March 2016 343-346