

Evaluation of nutritional composition of tropical forages and relationship with fiber digestibility

Risma Rizkia Nurdianti^{1,2}, Uta Dickhoefer^{1,3}, Joaquín Castro-Montoya^{1,4}

- ¹ Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute), University of Hohenheim, 70599 Stuttgart, Germany
- ² Faculty of Animal Husbandry, University of Padjadjaran, 45363 Sumedang, Indonesia ³ Institute of Animal Nutrition and Physiology, Kiel University, 24098 Kiel, Germany
- ⁴ Instituto de Ciencias Agroalimentarias y Ambientales, Facultad de Ciencias Agronómicas, Universidad de El Salvador, San Salvador, El Salvador

INTRODUCTION

- Low fiber digestibility in tropical forage legumes (TFL) may reduce feed intake when included in ruminant diets at > 400 g/kg dry matter intake.
- Fiber digestibility is partly determined by nutritional composition of feedstuffs and thus be predicted by their concentrations of nutrient and fiber fractions.

OBJECTIVES

- To determine proximate nutrient and fiber concentrations as well as fiber digestibility of TFL
- To evaluate the relationship between proximate nutrient and fiber concentrations and fiber digestibility of TFL and tropical grasses (TG)

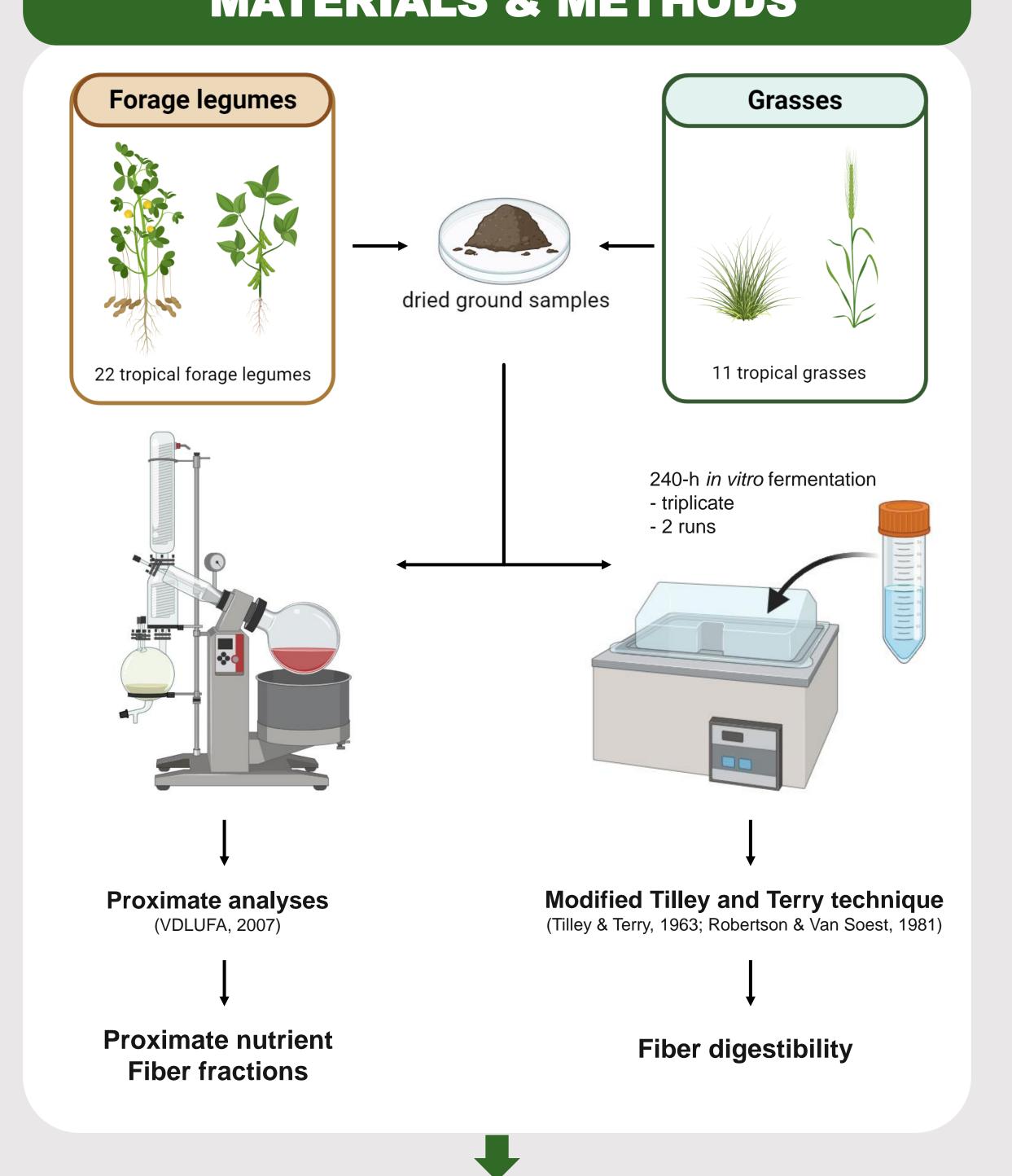

RESULTS

Table 1. Concentrations of proximate nutrient and fibre fractions (g/kg dry matter), as well as fibre digestibility of tropical forage legumes and tropical grasses.

		Type of forage			
Variables		Tropical forage legumes (n= 22)	Tropical grasses (n= 11)		
Crude protein	Means ± SD	198 ± 34	78 ± 24		
	(range)	(149 - 251)	(43 - 121)		
aNDFom	Means ± SD	361 ± 72	557 ± 62		
	(range)	(219 - 492)	(418 - 631)		
ADF	Means ± SD	276 ± 51	343 ± 64		
	(range)	(161 - 357)	(235 - 441)		
Lignin	Means ± SD	78 ± 18	41 ± 24		
	(range)	(49 - 109)	(17 - 98)		
uNDF ₂₄₀	Means ± SD	215 ± 67	201 ± 63		
	(range)	(113 - 376)	(125 - 308)		
pdNDF	Means ± SD	146 ± 40	356 ± 63		
	(range)	(75 - 216)	(235 - 473)		
pdNDF proportion (g/g aNDFom)	Means ± SD	0.411 ± 0.104	0.640 ± 0.096		
	(range)	(0.197 - 0.563)	(0.512 - 0.791)		

ADF, acid detergent fiber expressed inclusive of residual ash; aNDFom, amylase-treated ash-corrected neutral detergent fiber with addition of sodium sulphite; pdNDF, potentially digestible neutral detergent fiber; uNDF₂₄₀, undigested neutral detergent fiber estimated after 240 h of *in vitro* incubation.

MATERIALS & METHODS

Pearson correlations and multiple linear regressions were determined using CORR and GLM procedures of SAS

(V9.4, SAS Institute Inc., Cary, NC, USA).

CONCLUSIONS

- Fiber digestibility is related to aNDFom and lignin concentrations in TFL and to CP and lignin concentrations in TG.
- Further research with a greater number of samples is needed to validate the relationship fiber proximate nutrient and between concentrations and fiber digestibility.

Relationship between proximate nutrient with fiber concentrations and fiber digestibility (r):

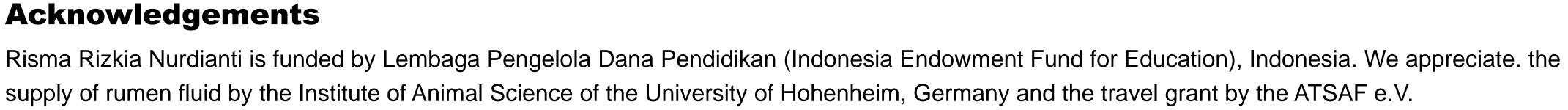
- The uNDF₂₄₀ concentration positively correlated with aNDFom, ADF, and lignin in TFL (0.84, 0.75, and 0.20) and TG (0.50, 0.59, and 0.25).
- In TFL, pdNDF proportion negatively correlated with aNDFom, ADF, and lignin (-0.34, -0.35, and -0.03).
- In TG, pdNDF proportion negatively correlated only ADF and lignin (-0.27 and -0.45).

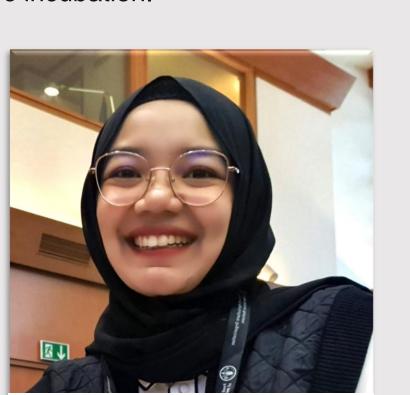
Table 2. Multiple linear regressions between proximate nutrient and fiber concentrations and fiber digestibility in tropical forages.

Dependent variable	Regression equation [parameter estimates (standard error)]	RMSE	R ²	P– value
uNDF ₂₄₀ concentration (g/				
Tropical forage legumes	45 (272) - 0.6 (1.3) CP + 0.4 (0.7) aNDFom	39	0.71	<0.01
(n = 22)	33 (168) + 0.5 (0.5) aNDFom - 1.3 (2.1) Lignin	39	0.70	<0.01
Tropical grasses (n = 11)	-953 (637) + 13.1 (9.8) CP + 2.3 (1.1) aNDFom	44	0.67	0.04
pdNDF proportion (g/g aN				
Tropical forage legumes	420 (449) - 0.1 (1.2) aNDFom + 2.3 (5.7) Lignin	106	0.12	0.49
(n = 22)	426 (501) - 0.2 (1.8) ADF + 2.9 (7.1) Lignin	105	0.14	0.44
Tropical grasses (n = 11)	230 (225) + 5.0 (2.6) CP + 5.2 (4.6) Lignin	86	0.44	0.22

ADF, acid detergent fiber expressed inclusive of residual ash; aNDFom, amylase-treated ash-corrected neutral detergent fiber with addition of sodium sulphite; CP, crude protein; pdNDF, potentially digestible neutral detergent fiber; P-value, probability value significance levels; RMSE, root mean squared error; R^2 , coefficient of determination; uNDF₂₄₀, undigested neutral detergent fiber estimated after 240 h of *in vitro* incubation.

References


Robertson, JB, Van Soest, PJ. 1981. The Detergent System of Analysis and its Applications to Human Foods. In: James WPT, Theander O, editors. Anal Diet Fiber Food. New York, USA: Marcel Dekker; p. 123–158. Tilley, JMA, Terry, RA. 1963. A two-stage technique for the *in vitro* digestion of forage crops. Grass Forage Sci. 18(2):104–111.


Verband Deutscher Landwirtschaftlicher Untersuchungs- und Forschungsanstalten. 2007. VDLUFA-Methodenbuch: Bd. III Die chemische Untersuchung von Futtermitteln. VDLUFA-Verlag, Darmstadt, Germany.

Risma Rizkia Nurdianti **Corresponding author** ⊠: risma rizkia.nurdianti@uni-hohenheim.de