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Fig. 2: Represents the current progress in modelling intercropping systems (A) and their capibilties for 
simulating light, water and N interactions.

Fig. 3: Showcases different model capabilities related to spatial geometry and interactions between plants 
(A).  While B & C provide visual examples of resource sharing concepts in two models: LUCIA (2D vs 2D) 
and DSSAT’s Mixed (1D vs 1D).
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 Parameters Influencing Light Competition 
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Parameters Influencing Water Competition 
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Parameters Influencing Nutrient(s) 
Competition 

Rootin
g D

ep
th

 R
oot L

ength
 D

en
sity

 (R
LD)

Spcie
s 

N D
em

an
d

Nitr
ogen F

ix
atio

n

Ava
ila

ble
 S

oil M
in

era
l N

 S
oil 

W
ate

r C
onte

nt

Basal 
Flo

w C
o-e

ffi
cein

t 2
 

Site
 P

ote
ntia

l P
ar

am
et

er
 

 P
re

fe
re

ntia
l G

ro
wth

 in
 D

efe
cit

Rhizo
sp

here
 V

olu
m

e

 Conceptual Intercomparison 
through AgMIP Platform

Detailed description on how the existing models represent intercropping 
systems in their entirety, including core concepts, assumptions, parameters  

as well as scale of application in time and space.
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Fig. 5: Models parameters driving light, water and N competition between the intercrop species

Fig. 4: Conceptual Intercomparison of models regarding above-ground (A) and below-ground resource sharing (B)
                 Indicates concepts similarities 
                

Fig. 1: Schematic representing Typical  
intercropping system 
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• Crop modelling for  intercropping and mixed systems 
has seen significant advancements and exciting 
developments in recent years, outpacing progress 
made in past decades.

• These  advancements  are  paving the way for 
designing  productive, sustainable and resilient 
agricultural systems.

• Models vary in their core concepts, assumptions, and 
driving parameters, emphasizing the need for careful 
consideration before use.

• In the future, field data on light, water, and nutrient 
competition will be used to evaluate the strengths 
and weaknesses of these models in simulating 
intercropping across different environments.

• Discrepancies in model results even when run under the same input data  as 
observed in previous multi-model comparison of monoculture systems [1,2].

• Additionally, the complexities of intercropping systems regarding light, water, and 
nutrient sharing concepts cannot be compared to monoculture systems.

• Most of these assumptions are rarely explicitly described in scientific publications, 
and sometimes they are not immediately apparent in the model documentation.

Results

Methodology
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H2O  and Nutrients are the 
share of soil resources within 

reach of the respective 
rhizosphere volumes, whereby 

resources in overlapping 
zones are shared between 

species proportionally to the 
respective fine root biomass.
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