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PREPROCESSING
Normalization of the  blue 
channel (B/R+G+B)
Background segmentation
Enhance contrast between 
green and yellow pixels (G-R)
Color quantization to 3
categories 

2IMAGE ACQUISITION
IN LIGHT BOX (LED 6000k)
CAMERA SETUP: 

Manual mode
Focus mode AF-A single point
White balance: 0.0 in the 
fluorescent mode
ISO: 100
Shutter speed: 1/50s
Aperture: 5.6

1
SP: Damaged pixels 

(yellow and dead)
GP: Green pixels

dai: days after infestation
wai: weeks after infestation

DAMAGE QUANTIFICATION3 Dam. % = × 100
SP

SP+GP
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INTRODUCTION
	h High-throughput phenotyping (HTP) offers the potential for a 
fast-paced, automated and more robust analysis on plant images 
for phenotyping purposes like plant damage quantification. 
	h Many times, the limiting factor resides on the lack of labeled 
data for training. In those cases, the use of unsupervised 
machine learning techniques like the k-means clustering 
algorithm can be applied.
	h However, classical image processing algorithms like Heckbert’s 
median-cut algorithm for color quantization, already available in 
different software tools, can also be applied to some extent.

OBJECTIVE 
Assess the performance of classical color quantization 
vs machine learning k-means for damage quantification 
on images of spittlebug infected tropical grasses. 

CONCLUSIONS
	h Color quantization was more accurate measuring the plant 
damage in Urochloa assisting the selection of tolerant 
genotypes for breeding.
	h Damaged areas can serve as annotations for training a 
robust model using deep learning algorithms for plant 
damage caused by spittlebugs.

METHODOLOGY 

Figure 1.  Methodology for data acquisition and digital image analysis.

Figure 2.  Sample results using the different approaches. K-means for cropped 
(method 1) and uncropped (method 2) generated incorrect results in several instances 
compared to color quantization. 
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