International Centre of Insect Physiology and Ecology (icipe)

# **Enhancing Crop Systems Classification through Fusion of Planetscope and Sentinel-2A using Deep Learning.**

Henry Kyalo<sup>1</sup>, Tobias Landmann<sup>1</sup>

<sup>1</sup>International Centre of Insect Physiology and Ecology, P.O Box 30772-00100 Nairobi, Kenya.

hkyalo@icipe.org

**TROPENTAG CONFERENCE**, 11-13 September 2024 | Vienna, Austria

## INTRODUCTION

- Crop systems classification is essential in understanding agricultural landscapes, monitoring crop production, and managing resources effectively.
- The fusion of high-resolution data from Planetscope and Sentinel-2A satellites offers a promising approach to achieving more accurate crop

## RESULTS

#### **Crop Systems Map**





- classification.
- By integrating these datasets, the strengths of both sensors can be leveraged.
- The high-resolution fused image can be used for crop systems classification.

## **OBJECTIVES**

- Develop a deep learning model that can predict Sentinel-2A at 2.5m.
- Classify common crop systems practiced in Busia County, Kenya.



## IMPACT

• The crop systems maps developed have enhanced agricultural planning, by having farmers make

informed decisions on what crops to plant, when to plant them, and how to manage resources effectively.

• Effective crop systems promote sustainable land use, preventing soil degradation, and other environmental issues.

## **REFERENCES/ FOOTAGES**

- 1. Richard, K.; Abdel-Rahman, E.M.; Subramanian, S.; Nyasani, J.O.; Thiel, M.; Jozani, H.; Borgemeister, C.; Landmann, T. Maize Cropping Systems Mapping Using RapidEye Observations in Agro-Ecological Landscapes in Kenya. Sensors**2017**, 17, 2537. https://doi.org/10.3390/s17112537.
- Aduvukha, G. R., Abdel-Rahman, E. M., Sichangi, A. W., Makokha, G. O., Landmann, T., Mudereri, B. T., ... & Dubois, T. (2021). Cropping pattern mapping in an agro-natural heterogeneous landscape using sentinel-2 and sentinel-1 satellite datasets. Agriculture, 11(6), 530. Sadeh, Y., Zhu, X., Dunkerley, D., Walker, J. P., Zhang, Y., Rozenstein,
  - O., ... & Chenu, K. (2021). Fusion of Sentinel-2 and PlanetScope timeseries data into daily 3 m surface reflectance and wheat LAI monitoring.
- Deep learning has been effectively used to enhance the spectral and spatial resolution of Sentinel-2A. The high-resolution satellite image has been effectively used in crop systems classification to provide solutions for agricultural planning, and sustainable land use.

### ACKNOWLEDGEMENT

The authors gratefully acknowledge the financial support for this research by the following organizations and agencies: the European Space Agency (ESA); the Swedish International Development Cooperation Agency (Sida); the Swiss Agency for Development and Cooperation (SDC); the Australian Centre for International Agricultural Research (ACIAR); the Norwegian Agency for Development Cooperation (Norad); the Federal Democratic Republic of Ethiopia; and the Government of the Republic of Kenya. The views expressed herein do not necessarily reflect the official opinion of the donors.



International Centre of Insect Physiology and Ecology

- P.O. Box 30772-00100, Nairobi, Kenya Tel: +254 (20) 8632000.
- E-mail: <u>icipe@icipe.org</u>

www.icipe.org

