

Tropical Waste Valorisation for Sustainable Resources:

Developing Cellulose-based Biodegradable Paper from Coffee and Corn Husks

PRIESKARINDA LESTARI*, DEVI YUNI SUSANTI, ANGGITANIKO SHIBA DHIYAUL ROHMA, NGADISIH NGADISIH, NATHANIA CLARA DIONE, RANA LABIBA AZZAHRA

Department of Agricultural and Biosystems Engineering, Faculty of Agricultural Technology, Universitas Gadjah Mada, Jl. Flora 1 Bulaksumur, Sleman, Yogyakarta, 55281, **Indonesia**

material prieskarindalestari@ugm.ac.id

Introduction

- Excessive plastic and paper packaging, along with poor waste management, contributes to environmental pollution.
- High paper production can lead to unsustainable deforestation.
- This highlights the need for eco-friendly alternatives, such as biodegradable paper.
- Indonesia is a major producer of coffee and corn commodities.
- Agricultural waste with high cellulose, such as coffee and corn husks, that contain cellulose up to 15.38% and 36%, respectively.
- Utilizing these wastes for cellulose-based biodegradable paper offers sustainable solution, adding value, and promoting eco-friendly practices.
- This study aimed to develop and characterize biodegradable paper from coffee and corn husks with varying polyvinyl alcohol (PVA) concentrations.

Materials and Methods

Sample **Preparation**

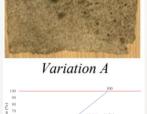
Drying & Grinding

Delignification

Pulpina

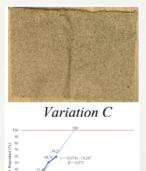
>>

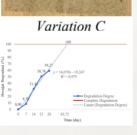
Paper Moulding & Drying

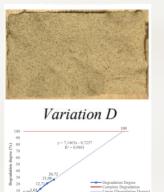


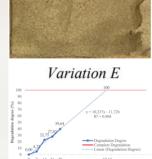
Characterization

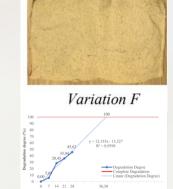
Table 1. Experimental Design of 6 Compositional Variations in Paper Pulp Production										
Sample	Dry Pulp Composition		PVA Solution (300mL)	NaCL	Repitions					
	KK (%)	KJ (%)	(%)	(g)	(1)	(2)	(3)			
A	75	25			A1	A2	A3			
В	50	50	5		B1	B2	B3			
C	25	75		5	C1	C2	C3			
D	75	25		- 3	D1	D2	D3			
Е	50	50	7.5		E1	E2	E3			
F	25	75			F1	F2	F3			
Note: Coffe	o huste (KK	and corn b	meke (KI)							

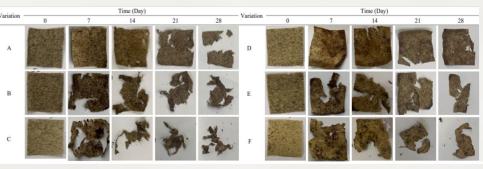

Results


Six Variations of Biodegradable Papers and Their Degradation Time






Variation B



Physical and Mechanical Characteristics

No	Parameters	Unit	Standards		Variations					Testing		
			*a	*b	A	В	C	D	E	F	methods	
Physic	cal											
1	Grammage	g/m^2	25 –210	50 - 100	129.39 _a	38.08_a	41.28_a	70.29_{ab}	71.25_{ab}	90.19_{ab}	SNI ISO 0439	
2	Bulk	cm ³ /g	-	1.3 –1.5	5.39	5.26	4.52	4.13	3.46	3.36	SNI ISO 0435	
3	Moisture content	%	_	4.5 - 6.0	8.72	7.00	5.27_{b}	4.77 _b	5.11_{b}	4.80_{b}	SNI 0496	
4	Whiteness Degree	%ISO	-	Min. 75	44.86	48.42	55.64	53.90	55.26	60.99	SNI 4733	
Mecho	inical											
5	Tensile resistance	kN/m	Min. 1.6	Min. 2.0	0.06	0.04	0.19	0.34	0.13	0.30		
6	Elongation	%	_	Max. 4	$1.80_{\rm b}$	0.98_{b}	1.18_{b}	2.20_{b}	1.41_{b}	1.81_{b}	SNI 4737	
7	Stiffness	mN.m	Min. 7	_	2.80	3.55	13.22 _a	13.14_{a}	7.40_{a}	13.92 _a		

Soil Burial Degradation Test Over 28 Days

Conclusions

- Six biodegradable paper variations from cellulose-based coffee and corn husks with different PVA concentrations were successfully created.
- The physical and mechanical properties of papers included grammage (38.08 129.39 g/m²), bulk (3.36 5.40 cm³/g), moisture content (4.80 - 8.72%), whiteness (44.80 - 60.99 %ISO), tensile resistance (0.04 - 0.30 kN/m), elongation (0.98 - 2.20%), stiffness (2.80 - 13.92 mN·m).
- All variations showed gradual weight loss, with degradation ranging from 37.81 59.27% over 28 days, and are expected to be completely degraded in 44 – 98 days, indicating good biodegradability.
- PVA concentration significantly affected paper properties: higher PVA increased grammage, whiteness, tensile resistance, and stiffness but decreased bulk, moisture content, and biodegradability.