

Innovative agroecology practices improve maize and bean yields in nutrient-deficient sandy soils of Makueni, Kenya

e

е

Peter Bolo^{1*}, Hezekiah Korir², Beatrice Adoyo³, Anne Kuria³, Lisa Elena Fuchs¹

¹International Center for Tropical Agriculture (CIAT), Nairobi, Kenya
²International Institute for Tropical Agriculture (IITA), Nairobi, Kenya
³Center for International Forestry Research and World Agroforestry (CIFOR–ICRAF), Nairobi, Kenya
<u>p.bolo@cgiar.org</u>*

INTRODUCTION	QUESTIONS	
Agroecology is a sustainable	 How do selected co-designed	
approach with potential to support	agroecology practices for soil, water and	
food system transformation in both	pest management influence maize and	
low and middle-income countries.	bean grain yields?	
Innovative agroecology practices are	 What are the monetary gains for	
key in improving crop yields, soil	smallholder farmers on maize and bean	
quality and health, livelihoods and	income arising from the implementation	
agrobiodiversity.	of the agroecology practices?	

METHODOLOGY

The study was conducted in 30 on-farm trials in sandy soils of Makueni, Kenya, in 2023. The study tested the effects of three treatments/interventions on maize and bean yields:

- Application of biopesticide (neem extract) for integrated pest control,
- Application of farmyard manure (FYM) for improved soil management,
- Improved terraces (with Napier grass planted on the edges) for water management.

These were implemented under 2 plots per farm: **Test (with intervention) and control** (without intervention). Each plot measured 5m x 6 m.

Maize and bean grain yields were determined after harvest and their monetary equivalents determined based on the prevailing local price (\$41.53) per 90-kg bag.

Maize and Bean Yields (kg per hectare)			
Practice	Test	Control	Increase (%)
Maize			
Biopesticide	4250 ^a	4151 ^a	99 (2.39)
FYM	4027 ^a	3831ª	196 (5.12)
Terraces	4002 ^a	3729 ^ª	273 (7.30)
Beans			
Biopesticide	598 ^a	548 ^a	50 (9.01)
FYM	479 ^b	407 ^b	72 (17.71)*
Terraces	516 ^{ab}	484 ^{ab}	32 (6.59)

RESULTS AND DISCUSSIONS

Derived **income** was **higher** under **test plots** than control plots, showing that higher yields lead/translate to higher income.

Highest income were attained under **biopesticide** than other treatments, implying the vital role of pest management on crop yields.

FYM **test plots** conferred a **significant increase in bean** yields and prices compared to **control plots**, reflecting the significance of agroecology interventions on food availability and income.

lCARDA

Maize and Bean Grain Prices (USD per hectare)

🛚 СІММҮТ 🧐

