Effects of Biosecurity Strategies on Technical Efficiency of Egg Production in Bono Region, Ghana

Desmond Ayertey, Freda Asem, Charles Yaw Okyere, Dolapo Enahoro

Introduction

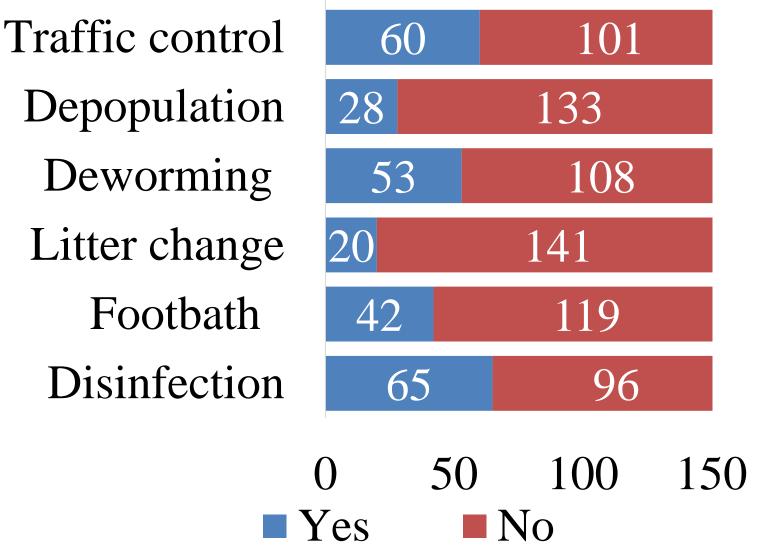
- Poultry industry growth in Ghana is hampered by production challenges including spread of viral diseases.
- Lax adherence to biosecurity practices may

Figure 1: Numbers of farmers practicing biosecurity measure

Other birds	52	109)
Protective clothing		135	26
Deep cleaning	42	119	

 Table 4: Factors affecting Technical
 Efficiency Levels

Variable	Coefficient
District of farmer	-0.621
Age of farmer	-0.0003
Gender of farmer	-0.543
Traffic control	-0.342
Footbath	0.209
Depopulation	-0.684
Litter change	-2.436
Deworming	-1.319
Disinfection	-2.602**
In-house cleaning	1.409
Other birds	1.700**
Protective clothing	-0.518
Constant	-3.987**


be leading to disease outbreaks and low efficiency of production.

Objectives

- This study identified and ranked viral diseases affecting farms, the biosecurity measures practiced, and their effects on technical efficiency of egg production.
- Study was conducted in Dormaa East and Dormaa Central districts in the Bono Region of Ghana.

Methods

• A total of 161 owners/managers of layerchicken farms with 500 to 10,000 birds were interviewed using multiple stage sampling technique.

Pseudo R-sq	0.218	Obs	161
Chi-sq	46.292	Prob > chi2	0.000

Highlights of Results

- All farms surveyed had experienced at least one outbreak of a viral poultry disease.
- Most of the farmers wore some form of

Table 2 : Stochastic Frontier Model

Quantity of eggs Coefficient p-value (crates)

Total feed	0.294 ***	0.000
consumed		
Total vaccination	0.345**	0.035
Total water	-0.057***	0.002
consumed		

- The Stochastic Frontier Model was applied using the Cobb-Douglas functional form to estimate the technical efficiency (TE) levels and factors affecting the TE.
- Descriptive statistics Kendall's and coefficient of concordance were used, respectively, in identifying the biosecurity practices and ranking the viral diseases.

Results

Table 1: Ranking of the Viral Diseases

Viral Diseases	Mean Rank	Ranking
Infectious	1.53	1 st
Bronchitis		
IBV	2.55	2 nd
(Gumboro)		
New Castle	3.28	3 rd

consumed

Dewormers and	0.217***	0.000
other drugs		

Labour	0.012	0.342
Constant	0.078***	0.000

Table 3: Technical Efficiency Levels

TE Level (%)	Frequency	Percentage (%)
50-60	1	0.62
61-70	2	1.24
71-80	8	4.97
81-90	31	19.25
01 and above	110	73 01

protective clothing on the farm.

- Farmers rearing other birds (e.g., turkeys, ducks) had a significant negative association with technical efficiency of egg production in Dormaa East and Dormaa Central.
- Regular disinfection improved the technical efficiency of egg layer production.

Recommendation

- Findings suggest that farmer education on biosecurity, currently provided by the Veterinary Services and Animal Health departments, should be done more routinely.
- To reduce risks of viral poultry disease outbreaks, research could further explore the challenges and incentives of farmers regarding the adoption of strict biosecurity practices.

Fowl pox	3.49	4 th	
Avian	4.17	5 th	
Influenza			
Marek Diseas	e 5.97	6 th	
Ν			161
Kendall's W ^a			.653
Chi-Square			525.535
df			5
Asymp. Sig.			.000

Contact: Dolapo Enahoro (d.enahoro@cgiar.org) • ILRI Ghana project office. c/o IWMI-Ghana, PMB CT 112 Accra, GHANA • +233-302784753 • ilri.org

91 and above 119 /3.91

Mean TE = 92.40%

Acknowledgement

• This research received funding and technical support from USDA and the Roslin Institute (UK) through a grant to the International Livestock Research Institute (ILRI).

