

Enhancing dairy production and farm income through irrigated fodder adoption: Evidence from smallholder producers in Ethiopia
Sisay Getaneh^{1,3}, Delelegne Abera², Melkamu Bezabih³, Ermias Tesfaye Teferi⁴
¹Amhara Agricultural Research Institute, Ethiopia
² Hawassa University, Agricultural Economics, Ethiopia
³ International Livestock Research Institute (ILRI), Ethiopia
⁴ The Alliance of Bioversity International & CIAT, Food Environment and Consumer Behaviour, Ethiopia
Contact: gesisay21@gmail.com

INTRODUCTION

• Inadequate and feed quality is hindrance to dairy production in

Ethiopia.

- Integrating irrigated forage into a mixed farm can improve, milk production, farm profitability, address climate change challenges, and enhance soil fertility.
- Despite ongoing scaling efforts, evidence of actual milk yield and farm income gains remains scarce.
- Thus, this study aims to evaluate the impact of irrigated fodder cultivation on milk yield and farm income.

Table 1. Average Treatment effect on the Treated using PSM model								
Outcome varia	bles Trea	ated	Control	Difference	St. Error	t-value		
Total farm inco	ome 702	33.9	61667.0	8566.96	4842.0	1.77*		
(ETB/year)								
Milk yield	6.24	Ļ	3.70	2.54	0.62	5.28***		
(Litters/days/cow)								
Dairy income	116	10.62	9382.20	2228.42	469.34	4.75**		
(ETB/year)								
Note: The bootstrapped se is obtained after 100 replications								
*, **, and ***, significant at 1%, 5%, and 10% probability levels								
$T_{11} = Propensity Score matching model$								
Table 2. Average treatment effects using the ESK model								
Outcome		Decision stage		A	verage			
variables	Category	r		treatn	treatment effect			
		То	adopt	Not to ado	pt			
Milk yield	ATT	(a) 5.	10	(c) 2.23	(I)2.87	***		
(Litters/days/co	ATU	(d) 4.	29	(b) 1.35	(II)2.94	4**		
w)	HE	(e) 0.	81	(f) 0.88	(III) -().06		
Dairy income	ATT	(a)11,	667.7	(c) 7,692.65	(I) 3,97	75.08***		
(ETB/year)	ATU	(d)12	,472.8	(b) 9,428.46	(II)3,04	44.41***		
	HE	(e) -8	05.15	(f) -1,735.81	(III) 93	80.67***		

✓ ILSSI project, 3 districts in Amhara and SNNP regions of Ethiopia

IVESTOCK RESEARC

INSTITUTE

CGIAR

• Sampling technique and procedure:

• Cross-sectional data on a total of 351 sample dairy producers (181 adopters and 170 non-adopters of irrigated fodder cultivation) were interviewed.

- ESRM and PSM techniques employed to address potential biases resulting from unobserved factors.
- Using both can strengthening the study's findings.

• Both PSM and ESR revealed that the irrigated fodder cultivation program has increased income and milk yield.

income	ATU	(d)90,545.3	(b) 54,550.75	(II)35,994.58**
(ETB/year)	HE	(e)17,530.0	(f) 8,037.29	(III)-25,567***

(a)73,015.2

Note: ***, 1% level of significance; ATT=Average treatment effect on treated; ATU=Average treatment effect on untreated Note: (I) = (a)-(c) (II) = (d)-(b) (III) = (e)-(f) HE = ATT-ATU_ESR = Endogenous Switching regression Model

ATT

Total Farm

(c) 62,588.04

(I)10,427.20**

- The results inform long-term strategies to create enabling conditions to scale the technology widely.
- Therefore, a comprehensive and integrated strategy is needed for more widespread adoption and
- Ongoing capacity building, and follow-up extension support are required.

Acknowledgments

- The authors recognize ILRI and ARARI for financial assistance as well as technical support.
- We would like to acknowledge enumerators, respondent farmers, districts, and kebele agricultural office workers.