

Opportunities and Agricultural Interventions in Coastal Bangladesh: Farmers' Aspirations and Production Strategies

Md. Amirul Islam^{1,2*}, Shyam Pariyar^{1*}, Mathias Becker¹, Timothy J. Krupnik²

¹ University of Bonn, Germany, and ² International Maize and Wheat Improvement Center (CIMMYT), Bangladesh

of Bangladesh are Coastal regions facing crop production risks persistent food and insecurity. To overcome these challenges, understanding the crucial factors that influence crop productivity is essential. Previous studies reported that farmers' decision-making, risk perception, and adoption of production strategies influence food security. Gaining insights into and needs is essential aims farmers' for developing effective agricultural interventions and to support mechanisms that are responsive to the specific challenges and opportunities in coastal regions. Thus, we addressed the following objectives:

Materials and methods

Study Sites: Two distinct coastal districts i.e., Barishal (favorable) and Patuakhali (marginal). Data Collection: Diachronic survey (240) of farm households on farming practices and yield outcomes over a ten-year period (2011 vs 2021). Data Analysis: Descriptive statistics, Tukey's test, ANOVA, Bonferroni, Pearson correlation analysis, Multiple regression analysis.

Conceptual framework of farmers' aims and desire in the coastal Bangladesh

- agricultural Develop framework for а interventions based on farmers' aspirations.
- aims, focusing Understand farmers' on risk reduction, hardship productivity, and alleviation.

Change in intensification practices

Practices	Favorable			Marginal				
	2011	2021	Sig	2011	2021	Sig		
Modern genotype adoption	0.02	0.38	***	0.30	0.56	***		
Machine tillage	0.39	1.00	***	0.82	1.00	***		
Machine harvest	0.00	0.00		0.00	0.23	***		
Organic amendment	0.00	0.01	NS	0.04	0.09	*		
Mineral N fertilizer use	0.09	0.70	***	0.34	0.69	***		
Recommended mineral N use	0.03	0.20	***	0.02	0.30	***		
N-splitting	0.02	0.20	***	0.3	0.56	***		
Mineral non-N use	0.03	0.51	***	0.26	0.66	***		
Herbicide use	0.00	0.04	*	0.00	0.32	***		
Insecticide use	0.08	0.52	***	0.46	0.74	***		
Fungicide use	0.01	0.06	*	0.09	0.35	***		
Descriptive statistics of intensification related management practices adoption at both past (year 2011) and present (year 2021) in coastal Bangladesh. Significant test was performed by								

Conclusions

- Crop intensification more at favorable than at marginal sites
- Yield increases higher, but also more variable, in dry than in wet seasons
- High adoption of productivitylabor-saving enhancing and

Increase productivity

Chi Square test. * and *** indicate significance at the 10% and 1% levels. NS: Not significant

practices, irrespective of sites

 Increased grain yield achieved mineral N, adoption OŤ by genotypes, modern and pesticide use

Different management practice options and their impacts of grain yield i.e., rice equivalent. Vertical bars represent standard errors of the mean. Tukey's test was performed to find the significance. ** and *** indicate significance at the 5% and 1% levels.

Yield variability

Effect of agronomic practices on yield

Agron. practices	Grain yield				
	Favo	orable	Marginal		
	2011	2021	2011	2021	
Modern genotype	0.05	0.53**	0.14	0.35**	
Machine tillage	0.03	NA	0.18*	NA	
Machine harvest	NA	NA	NA	0.10	
Organic amendment	NA	0.10	0.07	0.28**	
Mineral N fertilizer use	0.22**	0.33**	0.32**	0.37**	
Recommended mineral N use	0.08	-0.15*	0.04	-0.13	
N-splitting	0.07	0.84**	0.30**	0.46**	
Mineral non-N use	0.06	0.44**	0.39**	0.35**	
Herbicide use	NA	0.38**	NA	0.35**	
Insecticide use	0.09	0.39**	0.32**	0.20**	
Fungicide use	-0.13	0.21**	0.35**	0.40**	

Major contributors to yield

Grain yield variability in individual crops in both past (year 2011) and present (year 2021) in the both marginal and favorable sites. *** indicate significance at the 1% levels. ANOVA followed by Bonferroni post hoc test was used for the multiple comparison. Identical letters denote groups with no significant differences.

Intensification related agronomic practices affecting grain yield (Pearson Correlation) in past (2011) and present (2021) in coastal Bangladesh. * and ** indicate significance at the 10% and 5% levels. NA: Correlation cannot be computed because at least one of the variables is constant.

N fertilizer split		Non-in tertilizer use				
		Machine harvest				
Fungicide use		Fungicide use				
Organic ammendments		N fertilizer split				
N fertilizer use		Recommended N rate				
Machine tillage		Insecticide use				
Modern genotype	n = 179	Organic ammendments	n = 200			
Recommended N rate		Hebicide use				
ſ	Γ	1				
0 0.2 0.4 0 0.2 0.4						
Standardized Standardized						
coefficient (β) coefficie						
	-					

Ranking of intensification related management practices affecting grain yield by multiple regression analysis at both favorable and marginal site in both past (2011) and present (year 2021) in the coastal Bangladesh.

UNIVERSITÄT

Commissioned by the German Federal Ministry for Economic Cooperation and Development (BMZ) and carried out by **ATSAF** e.V. on behalf of the Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH.

