

Integral valuation of ecosystem services and environmental benefits in livestock farming

Jesús Fernando Flórez¹, Mounir Louhaichi², Yigezu Atnafe Yigezu², Wane Abdrahmane³, Abeyou Worqlul², Sawsan Hassan², Azaiez Ouled Belgacem², Danny Sandoval¹, Jhon Jairo Junca¹, An Notenbaert¹, Stanley Karanja¹ & Stefan Burkart¹.

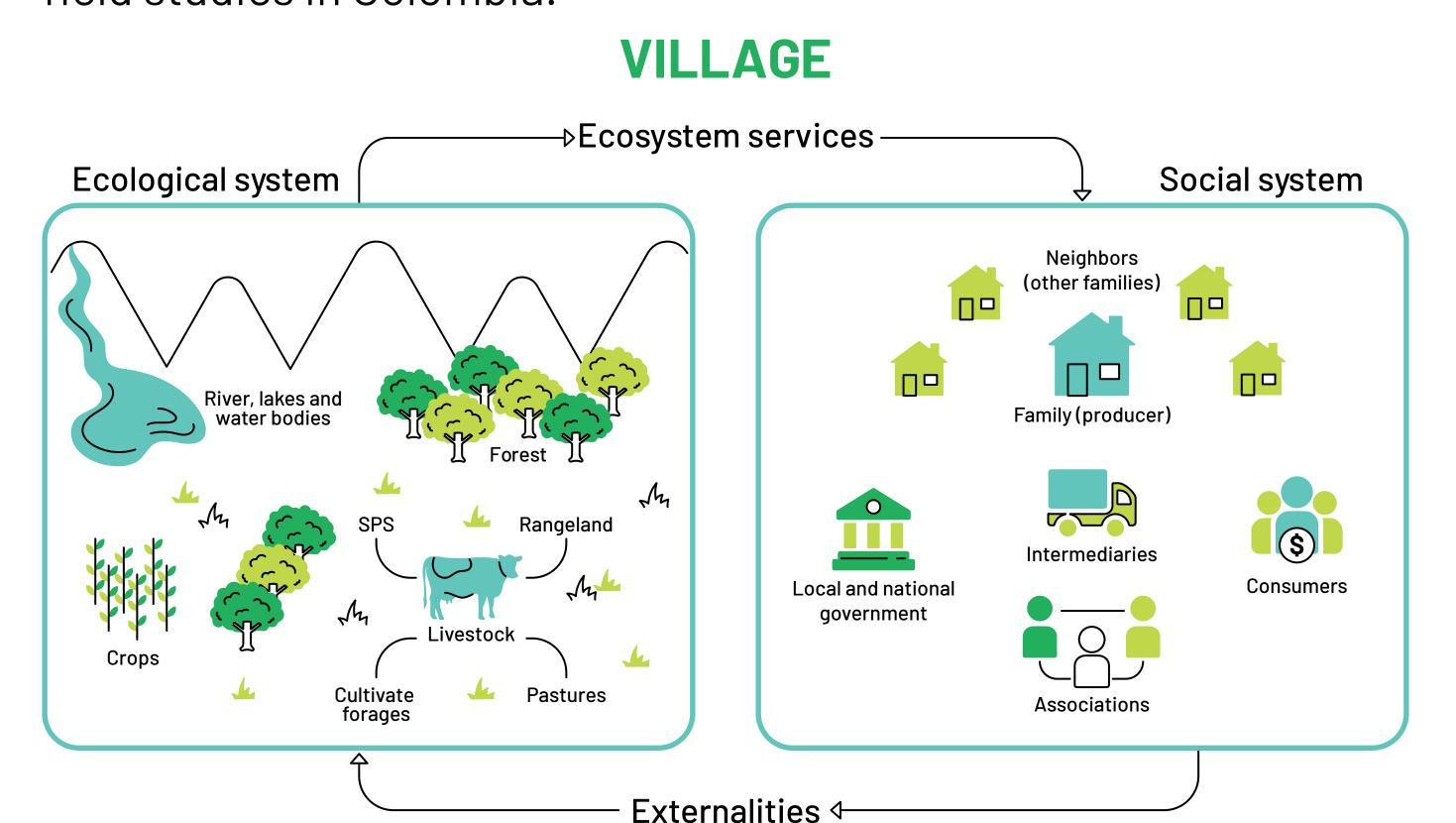
¹ International Center for Tropical Agriculture, Tropical Forages Program. ² International Center for Agricultural Research in the Dry Areas. ³ International Livestock Research Institute.

Contact: s.burkart@cgiar.org

INTRODUCTION

- Livestock systems are socioecological systems that generate differentecosystemservices and environmental benefits. We have prioritized seven ecosystem services and three environmental benefits of interest.
- Integral valuation is a method that allows to assess the ecological, economic, and social value of ecosystem services and environmental benefits. Information generated from this method is amenable to benefit cost analyses for evaluating the returns on investment for introducing interventions in livestock systems.
- ➤ Knowing the integral value of the interventions allows us to demonstrate to stakeholders their economic, environmental, and social viability, and persuade them to contribute to the financing of more sustainable livestock farming models.

OBJECTIVE


To identify the main ecosystem services and environmental benefits in livestock farming, to propose an integral valuation strategy, and to incorporate these values into economic evaluation methods. This integral valuation strategy will allow us to evaluate the impacts of interventions by comparing situations before and after an intervention or between intervened and non-intervened systems.

METHODOLOGY

This integral valuation strategy was designed based on an extensive literature review, discussions by an ecosystem services advisory group with experts from CIAT, ILRI, and ICARDA, and field studies in Colombia.

RESULTS

Based on the functioning of the socioeconomic system in livestock farming, we identified the main seven ecosystem services and three environmental benefits generated on these ecosystems. We designed an integral valuation strategy, and we piloted it in three field studies in Colombia.

(Positive and negative)

Figure 1. Socioecological system in livestock farming.

Table 1. Identification of ecosystem services and environmental benefits in livestock farming

NAME	TYPE	PASTURES	CULTIVATED FORAGES	RANGELANDS	AGRO-SILVO- PASTORAL SYSTEMS
Food	Ecosystem service	✓	✓	✓	✓
Feed	Ecosystem service	✓	✓	✓	✓
Carbon storage and sequestration	Ecosystem service		√	✓	✓
Micro-climatic regulation	Ecosystem service			✓	✓
Soil fertility	Ecosystem service	✓	✓	✓	✓
Habitat for species	Ecosystem service		✓		✓
Aesthetic appreciation	Ecosystem service			✓	✓
Methane emissions reduction	Environmental benefit	✓	√	✓	✓
Water use reduction	Environmental benefit			✓	✓
Land use reduction	Environmental benefit	✓	✓	✓	✓

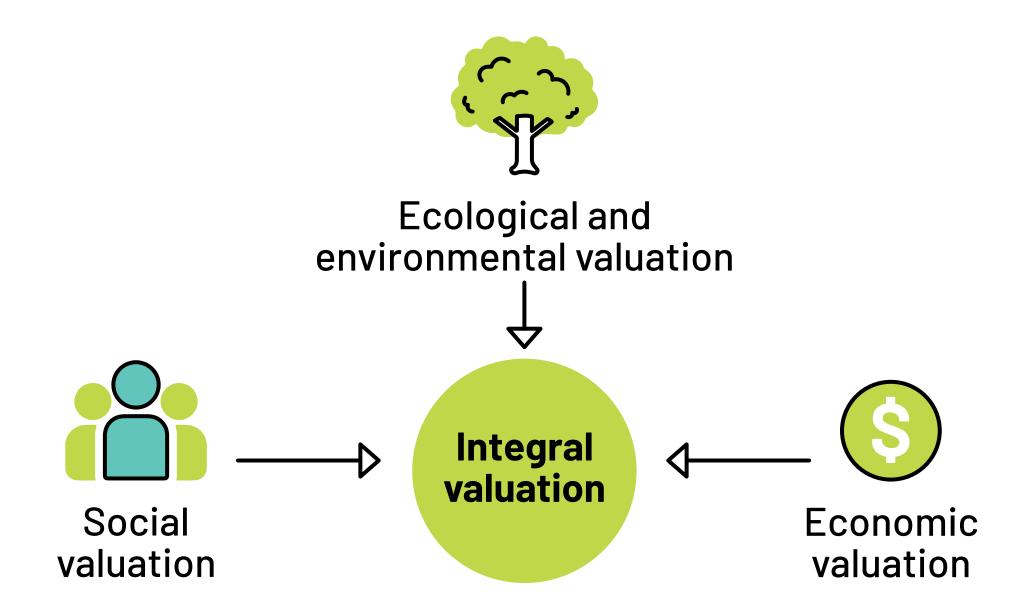


Figure 2. Integral valuation strategy

Table 2. Results from field studies conducted by CIAT in Colombia.

REFERENCE*	IMPLEMENTATION	ECOSYSTEM SERVICES AND ENVIRONMENTAL BENEFITS	ECOLOGICAL VALUE	ECONOMIC VALUE \$US
	Silvopastoral system and improved pastures	Methane emissions reduction	Methane emissions reduction 144 KgCO2eq/animal/year	6
		Microclimatic regulation	Shade coverage 60.4%/ha/year	2,026
I II II INTERA ET	Silvopastoral system and improved pastures	Milk carbon footprint reduction	Milk carbon footprint reduction 1,813 KgCO ₂ eq/animal/year	58
		Microclimatic regulation	Shade coverage 5.9%/ha/year	411
Gonzalez- Quintero et al., (2023b)	Improved pastures and good cattle husbandry and pasture management practices	Beef carbon footprint reduction	Beef carbon footprint reduction 239 KgCO2eq/animal/year	9

^{*}References taken from Florez et al. (2023).

CONCLUSIONS

The integral value of ecosystem services and environmental benefits will provide crucial support for informed decision-making on specific restoration initiatives, considering the project's objectives and the potential return on investment. In particular, integral valuation represents an opportunity for the design of economic instruments that allow financing sustainable technologies, for example carbon credits, biodiversity bonds, and Payment for Ecosystem Services (PES).

REFERENCES

Flórez, J.F.; Louhaichi, M.; Yigezu, Y.A.; Abdrahmane, W.; Worqlul, A.; Hassan, S.; Belgacem, A.O.; Sandoval, D.; Junca, J.J.; Notenbaert, A.; Karanja, S.; Burkart, S. (2023) Ecosystem services and environmental benefits in livestock systems: Definition of terms, and valuation methods. Cali (Colombia): CGIAR Initiative on Livestock and Climate. 10 p. https://hdl.handle.net/10568/135852

ACKNOWLEDGEMENTS

This work was conducted as part of the One CGIAR Initiatives on Livestock and Climate (L&C). We thank all donors who globally support our work through their contributions to the CGIAR System.

