



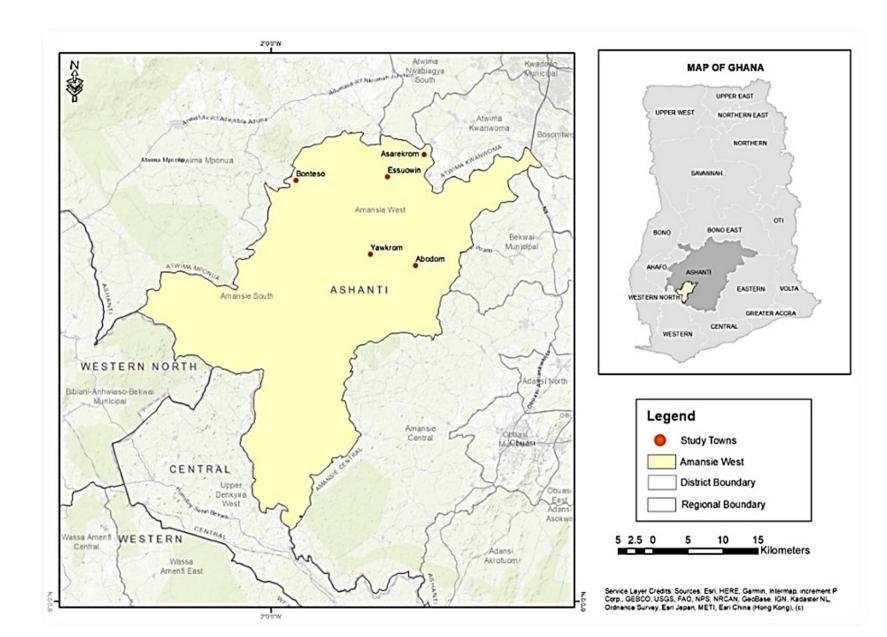




# Local communities' preferences and willingness to contribute communal labor towards rehabilitating small-scale mined (ASM) community lands: A choice experiment approach

#### **AUTHORS**

Ferdinand Adu-Baffour
Thomas Daum
Elizabeth Asantewaa Obeng
Christine Bosch
Regina Birner


## 1. INTRODUCTION

- In communities in mineral-rich developing countries, illegal ASM operations have led to a growing number of degraded, mercury-contaminated and abandoned mined local lands.
- State governments often lack the resources to implement rehabilitation effectively.
- Engaging rural communities in land rehabilitation projects can enhance environmental sustainability and community well-being
- STUDY OBJECTIVE: To understand local preferences for land rehabilitation attributes, which could inform their willingness to contribute to community land rehabilitation initiatives

# 2. METHODOLOGY

#### i. Research study case and area

- Tropenbos Ghana's pilot approach of rehabilitating and reforesting degraded, heavy metal contaminated and abandoned mined lands with the participation of local communities in the Amansie West district
- 5 project-beneficiary-communities within this district were selected



#### ii. Sampling and data collection

- Focus group discussions with 45 participants (32 Males, 13 Females)
- Discrete choice experiment with 320 participants in the 5 communities









#### iii. Experimental design

• The Discrete Choice Experiment (DCE) was based on respondents' selection of desired degraded land restoration options: profiling systematic variations in selected rehabilitation input and outcome attributes or no change in current conditions:

Prob(WTP = Yes, No | Z"restoration", Z"statusquo", w) = Prob(U"restoration" > U"statusquo")

where Z"restoration" = set of restoration attributes, Z"statusquo" = current land condition, and w = respondents' characteristics

• These selected rehabilitation attributes included physical land reconstruction, phytoremediation, revegetation, implementation period and labor commitments

#### iv. Analysis

- The DCE data was analyzed following the random utility model (MXL) using STATA
- MXL model estimated the utility (coefficients) a decision maker obtains from choosing a land rehabilitation option from a set of alternative rehabilitation options presented
- Respondents' willingness to contribute voluntary labor (WTP), which are observable, was calculated using the estimated latent coefficients



ASM land degradation, mercury-contamination and restoration using community-based land rehabilitation approach in pictures

# 3. RESULTS

- Strong preference for physical land reconstruction, despite its higher cost compared to other attributes
- Phytoremediating 50% of reclaimed land → limited awareness of health implications of heavy-metal-contaminated agricultural soils
- Preference for dense vegetation cover to promote biodiversity and ecosystem services, with a fixed choice effect
- Waiting time for the safe reuse of restored land emerged as a key factor influencing decision-making, particularly if it exceeded 20 years

|                       | Model 1         | Model 2             | Model 3     |
|-----------------------|-----------------|---------------------|-------------|
| Variable              | Attributes enly | Attributes + socio- | <b>.</b>    |
|                       | Attributes only | demographic         | perception  |
|                       | Coefficient     | Coefficient         | Coefficient |
| FIXED COEFFICIENTS    |                 |                     |             |
| Cost                  | -0.008***       | -0.008***           | -0.008***   |
| Moderate level land   |                 |                     |             |
| reclamation           | 1.959***        | 1.912***            | 1.925***    |
| Phytoremediation on   |                 |                     |             |
| 50% land              | 1.181***        | 1.126***            | 1.134***    |
| Medium vegetation     |                 |                     |             |
| cover                 | 0.299           | 0.574**             | 0.585**     |
| High vegetation cover | 0.299           | 0.536**             | 0.516**     |
| Implementation        |                 |                     |             |
| period (> 20 years)   | -0.229          | -0.330*             | -0.337*     |
| Implementation        |                 |                     |             |
| period (between 10 to |                 |                     |             |
| 20 years)             | -0.136          | -0.131              | -0.143      |
| RANDOM                |                 |                     |             |
| COEFFICIENTS          |                 |                     |             |
| High level land       |                 |                     | ***         |
| reclamation           | 2.323***        | 2.351***            | 2.398***    |
| Phytoremediation on   |                 |                     |             |
| 75% land              | 0.049           | 0.08                | 0.081       |
| Log-likelihood        | -530.154        | -433.438            | -425.489    |
| LR Chi2(5)            | 85.65           | 67.24               | 66.62       |
| Prob > Chi2           | 0.000           | 0.000               | 0.000       |

| Land rehabilitation   | WTP (GH¢ household-1 month-1) |        |  |
|-----------------------|-------------------------------|--------|--|
| attributes            | Moderate                      | High   |  |
| Land reclamation      | 244.88                        | 290.38 |  |
| Phytoremediation      | 147.63                        | 8.88   |  |
| Vegetation cover      | 37.40                         | 37.43  |  |
| Implementation        | -17.00                        | -26.13 |  |
| period Aggregate WTP  | 412.91                        | 310.56 |  |
| 1 USD equals 7,75 GH¢ | 712.71                        | 310.50 |  |

### 4. CONCLUSION

- Findings underscore the importance of tailored approaches to engage rural communities in land restoration projects that prioritize physical reconstruction
- It also highlights the need to educate community members about the health risks associated with soil contaminated through ASM and to promote sustainable remediation strategies with market opportunities
- It is essential to emphasize the time required for successful restoration to secure community buy-in and ensure the long-term success of such projects

**References:** Ahirwal, Jitendra and Vimal Chandra Pandey. 2020. "Restoration of Mine Degraded Land for Sustainable Environmental Development." 29(4):2–5.|Pandey, Vimal Chandra and Pablo Souza-Alonso. 2018. "Market Opportunities: In Sustainable Phytoremediation." Pp. 51–82 in Phytomanagement of Polluted Sites. Elsevier Inc.|McFadden, Daniel. 1974. "Conditional Logit Analysis of Qualitative Choice Behavior." Pp. 105–142 in Frontiers in Economics. New: Academic Press.



#### CONTACT

Ferdinand Adu-Baffour

Chair of Social and Institutional Change in Agricultural Development (490c)

Wollgrasweg 43, 70599 Stuttgart, Germany

Ferdinand.adubaffour@uni-hohenheim.de