

Effects of land tenure security-driven afforestation on household food security in Ghana

Abraham Zakaria*, Seidu Al-Hassan

West Africa Centre for Shea Innovation and Research (WACSIR)

University for Development Studies, Ghana

*Corresponding author: zackabram@yahoo.com

Introduction

- In the Global South, including Ghana, the interplay between land tenure, afforestation efforts, and household food security remains a critical
- The right to sufficient food is seen as a fundamental human entitlement, but food insecurity persists due to low investment in agriculture as result unsecured land rights (Long et al., 2020; Glauber & Laborde,
- While studies have explored the individual effects of tenure security and afforestation on welfare outcomes (Alban & Willem, 2020; Asaaga et al., 2020), limited research exists on their combined impact on household food security.
- Examining the linkages between tenure security, investment in planting trees, and food security through food expenditure share could become the ultimate evidence for policymakers for decision-making.

Materials and Methods

Study area: Ghana Source: GLSS7 data

Sample size: 5776 farm households.

Multinomial Endogenous Switching Regression (MESR)

- This model was employed to estimated the land tenure securityafforestation effects food security using household food consumption share as proxy.
- The MESR have the ability handle the selectivity bias emerging from both observable and unobservable factors.

Results & Discussion

Land tenure and afforestation status in Ghana

20.00

- Joint (A+B)
- Afforestation only (B)
- 9.83 21.16 57.72
- No tenure security and

■ Tenure security only (A)

- 40.00 60.00

80.00

- Percentage (%) afforestation
- 21% of farm households have secure lands;
- 11% engaged in investment in afforestation (tree planting); and
- 10% of the households simultaneously have secured-landafforestation.

Socioeconomic drivers of individual and joint tenure security and afforestation

Drivers of individual and joint tenure security-afforestation

Variables •	PT only		TS only		Joint	
	dy/dx	Std. Err.	dy/dx	Std. Err.	dy/dx	Std. Err.
Education	0.016	0.011	0.010	0.013	0.011	0.010
Gender	0.017*	0.009	0.026**	0.013	-0.015*	0.009
Age	0.023*	0.014	0.068***	0.018	0.016	0.013
Off-farm	-0.002	0.008	-0.002	0.012	0.015**	0.008
Phone	0.003	0.010	0.008	0.012	0.001	0.009
Sharecropped	0.013	0.015	0.053**	0.027	0.023*	0.013
Purchased land	-0.098***	0.028	0.317***	0.034	0.118***	0.015
Inherited land	-0.023***	0.007	0.163***	0.010	0.064***	0.007
Livestock	-0.000	0.009	0.019**	0.011	0.011	0.008
Credit	-0.033**	0.014	-0.009	0.017	0.005	0.011
Remittance	0.002*	0.001	-0.009***	0.002	0.005***	0.001
Family size	-0.004***	0.001	0.002	0.002	-0.000	0.001
Farm capital	0.007***	0.002	0.016***	0.003	0.016***	0.002
C. diversity	-0.003	0.005	0.011**	0.005	-0.020***	0.005
Farm distance	-0.026***	0.006	-0.007	0.008	-0.030***	0.006
Mkt	-0.012	0.017	0.060***	0.021	0.025*	0.014
Regions	Yes		Yes		Yes	

Effects of tenure security-afforestation on food security

	Decisio	n stage			% change in	
Outcome	Not secure afforestation	Secured land- afforestatio n	ATT	T-value	outcome	
	(j=1)	(j=2, 3,4)				
Scenario	(1)	(2)	3 = (2-1)		4 = (3/1)	
PT only	1.800	1.760	-0.035***	-5.4710	-1.94	
	(0.003)	(0.005)	(0.003)			
TS only	1.798	1.761	-0.037***	-4.7424	-2.06	
	(0.004)	(0.006)	(0.008)			
Joint	1.804 (0.003)	1.762 (0.006)	-0.043*** (0.007)	-6.3165	-2.38	

- Invest in afforestation only reduces household food insecurity by 3.50%.
- Tenure security only reduces household food insecurity by 3.70%.
- Tenure security-afforestation (joint effect) reduces household food insecurity by 4.30%.

Discussion

- Male households were found to have a positive association with tenure security only and afforestation investment only but a negative association with tenure security and afforestation jointly.
- Households with outright land purchase and inherited lands had a negative correlation with afforestation investment only but a positive correlation with tenure security only and secured land-afforestation jointly.
- Households who received remittance were more likely to invest in afforestation only and joint tenure security-afforestation investment.
- The amount a household spends on farm production had a positive and significant association with individual and joint land tenure security and afforestation investment.
- The study further revealed that households with land tenure and propensity to invest in afforestation enhance food security.

Conclusions and policy implications

- Land tenure security incentivizes investment in sustainable land management- This helps minimize household susceptibility to food insecurity.
- Male households are more likely to have secure land and investment in afforestation compared to female households.
- Land ownership right enhance tenure security and land tenuredriven afforestation investment.
- Secure land tenure and afforestation initiatives should be jointly implemented to enhance household food security.
- Future research should consider land tenure security as a bundle of rights by developing a composite index to measure tenure security and rural agricultural development.

References

Alban, S. U., & Willem, E. M. (2020). Relations between land tenure security and agricultural productivity: Exploring the effect of land registration. Land 9(5), 138. Asaaga, F. A., Hirons, M. A., & Malhi, Y. (2020). Questioning the link between tenure security and sustainable land management in cocoa landscapes in Ghana. World Development 130, 104913.

Glauber, J., & Laborde, D. (2023). Repurposing food and agricultural policies to deliver affordable healthy diets, sustainably and inclusively: what is at stake?: Background paper for The State of Food Security and Nutrition in the World 2022. FAO, Rome, Italy.

Long, M. A., Gonçalves, L., Stretesky, P. B., & Defeyter, M. A. (2020). Food insecurity in advanced capitalist nations: A review. Sustainability 12(9), 3654.

Improving Livelihoods through On-the-Ground Research"

