Peaberry Coffee Beans Shape Influence in Final Cup Quality Eduardo Duque-Dussán¹*; Juan R. Sanz-Uribe¹; Paula A. Figueroa-Varela²

Postharvest Discipline, National Coffee Research Center of Colombia, Manizales, Colombia. ² School of Applied Sciences and Engineering, EAFIT University, Medellín, Colombia.

Introduction

- **Peaberries** are small, ellipsoidal coffee beans from single-embryo fertilization.
- Factors like **environment** and **pollination issues** cause their formation.
- They make up 5-7% of coffee crops, with some Ethiopian varieties reaching **16%**.
- Peaberries, though seen as defects, often have better quality due to uniform drying and roasting.
- The study compared peaberries and standard beans in terms of drying, roasting, and mechanical properties.

Results

- After evaluating the beans in the mentioned processes, the peaberries displayed:
 - \rightarrow Reduced orthogonal dimensions.
 - \rightarrow Faster drying times (15vs. 18h).
 - \rightarrow More uniform compressive and shear forces for failure.
 - \rightarrow Uniform roasting profiles in the inner domain.
 - \rightarrow Score of 81.77 vs 81.97, both "very good specialty coffee" SCA.

Tests evaluated peaberries' impact on coffee quality.

Figure 1. Peaberry radiuses.

Methodology

- The study used *Coffea arabica L. var. Cenicafé 1* from Cenicafé, Manizales, with beans picked in Chinchiná.
- Beans were processed via <u>wet method</u> to obtain 8 kg of dry parchment coffee at Cenicafé(4.991873, -75.597159; 1306 m.a.s.l).
- The coffee was roasted in a **PROBAT roaster at 200°C for 8-12** minutes to a medium-high profile 55 agtron.

Figure 3. Inner domain comparison.

Bigger air gaps are seen in the standard bean: Burned edges (low air thermal conductivity) X

- Evaluated characteristics:
 - micrometer (*L*, *w*, *t*).
 - \rightarrow **Drying**: Gravimetric principles ISO 6673:2003.
 - → Roast profiles image analysis: Fiji.
 - -> Compressive and shear tests: MARK-10 ESM 1500S testing machine.
 - *→ Colorimetry*: Konica Minolta CR410 Chroma Meter colorimeter. → *Coffee cupping*: Q-Grader panel (SCA protocol)

Figure 4. Transversal and longitudinal cuts colour intensity.

Figure 4. Heat distribution patterns during roasting. A. Rotating peaberry. B.Standard grain in unstable equilibrium. C. Standard grain in stable equilibrium.

Figure 2. A. Compressive and shear tests. B. Colorimetry

Conclusions

- Peaberries, despite being seen as <u>defects</u>, have <u>advantageous</u> traits due to their shape.
- They dry **faster**, roast **more evenly**, and achieve **high cupping scores**.
- Research could improve methods to **recover** and **utilize** peaberries.
- Better commercialization of peaberries could boost market trends and grower **income**.

Contact author*

eduardo.duque@cafedecolombia.com www.eduardodd.com ORCID: 0000-0002-8045-6088

References:

Burmester, K., & Eggers, R. (2010). Heat and mass transfer during the coffee drying process. Journal of Food Engineering, 99(4), 430–436. https://doi.org/10.1016/j.jfoodeng.2009.12.021

Duque-Dussán E, Villada-Dussán A, Roubík H, Banout J. Modeling of Forced and Natural Convection Drying Process of a Coffee Seed. J ASABE. 2022;65: 1061–1070. doi:10.13031/ja.15156

Duque-Dussán, E., Figueroa-Varela, P. A., & Sanz-Uribe, J. R. (2023). Peaberry shape and size influence on different coffee postharvest processes. Journal of Food Process Engineering, (July), 1–14. https://doi.org/10.1111/jfpe.14461

Nilnont, W., Thepa, S., Janjai, S., Kasayapanand, N., Thamrongmas, C., & Bala, B. K. (2012). Finite element simulation for coffee (Coffea arabica) drying. Food and Bioproducts Processing, 90(2), 341–350. https://doi.org/10.1016/j.fbp.2011.06.007