

Impacts of *Urochloa* hybrid forage seed adoption in the global tropics 2001-2022

Stefan Burkart, Rosa Jauregui, An Notebaenrt, Mary Atieno, Michael Peters. **International Center for Tropical Agriculture, Tropical** Forages Program. **Contact:** s.burkart@cgiar.org

NTRODUCTION

- > The global demand for animal-sourced food is expected to grow significantly by 2027, especially in developing countries, highlighting the strategic importance of the livestock sector for food security and rural livelihoods.
- Cattle farming presents both economic benefits and environmental challenges, such as greenhouse gas emissions and deforestation, emphasizing the need for sustainable practices.

> The adoption of Urochloa hybrid forages offers potential solutions, but there is a lack of comprehensive studies on their adoption, economic value, and environmental impact across different regions.

OBJECTIVE

To estimate the adoption of *Urochloa* hybrid forages across more than 70 countries, assessing the land use, social, economic, and environmental impacts of their adoption.

METHODOLOGY

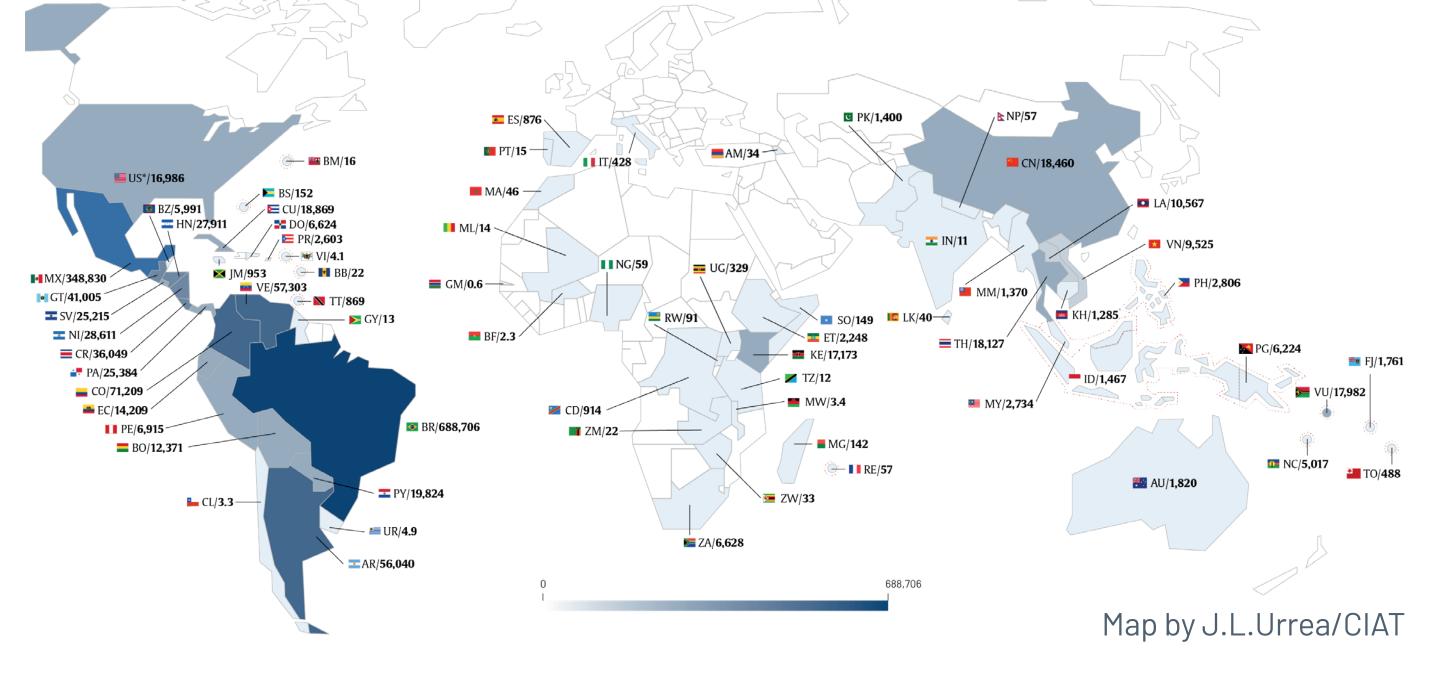

The study is based on using an alternative approach that relies on seed sales data, national statistics, literature, and expert consultations.

Figure 2. Total and annual regional *Urochloa* hybrid forage crop values, 2001-2031

Table 2. Estimated GHG emission reductions and spared land from Urochloa hybrid adoption in the Americas, 2001-2022

	AREA (HA)	TOTAL LWG (MT)	TOTAL CO _{2EQ.} (MT)	GHG REDUCTION (MT CO _{2E0.})	SPARED LAND (HA)			
Scenario A – 100% replacement (unrealistic)								
Dichantium aristatum	7,153,400*	21.46	238.85	n.a.	n.a.			
Urochloa hybrid cv. Cayman	1,512,702**	21.46	162.24	76.61	5,640,698			
Scenario B – 70% replacement								
Dichantium aristatum	5,007,380*	15.02	167.20	n.a.	n.a.			
Urochloa hybrid cv. Cayman	1,058,891**	15.02	113.57	53.63	3,948,488			
Scenario C – 50% replacement								
Dichantium aristatum	3,576,700*	10.73	119.43	n.a.	n.a.			
Urochloa hybrid cv. Cayman	756,351**	10.73	81.12	38.31	2,820,349			
Scenario D – 30% replacement								
Dichantium aristatum	2,146,020*	6.44	71.67	n.a.	n.a.			
Urochloa hybrid cv. Cayman	453,811**	6.44	48.67	22.98	1,692,209			

Figure 1. Global adoption of *Urochloa* hybrids, 2001–2022, (in ha, cumulative)

Table 1. Adopters and beneficiaries of Urochloa hybrid adoption, 2001-2022

COUNTRY	YEAR	ADOPTING PRODUCERS	WOMEN ADOPTERS	TOTAL BENEFICIARIES
Africa	2005-2022	55,853	19,778	531,324
Asia	2004-2022	280,813	54,896	2,186,524
Australia/Oceania	2004-2021	105,202	20,946	1,294,910
Europe	2005-2020	821	245	3,447
North and Central America, Caribbean	2001-2022	766,535	93,231	5,344,752
South America	2002-2022	226,679	44,706	1,498,090
TOTAL Global	2001-2022	1,435,904	233,801	10,859,046

*Area required with Dichantium aristatum to produce the same LWG as with the adopted Urochloa hybrids; **Area with Urochlog hybrids in the Americas that replaced native/naturalized pastures.

CONCLUSIONS

- > Productivity and Environmental Impact: Urochloa hybrids significantly enhance cattle productivity and contribute to substantial reductions in greenhouse gas emissions, offering both economic and environmental benefits.
- > Adoption and Potential: Despite being adopted by over 1.4 million farmers across 1.6 million hectares, Urochloa hybrids still represent a small portion of total agricultural land, indicating considerable potential for further adoption, especially in Africa and Asia.
- Challenges and Future Needs: To fully realize the potential of Urochlog hybrids, it is crucial to address barriers such as seed system development, extension services, and policy support, particularly in emerging markets.

REFERENCES

Burkart S. 2022. CIAT Urochloa hybrid seed sales and adoption: 2021 data and global developments. Alliance of Bioversity International and CIAT, Cali, Colombia. <u>https://hdl.handle.net/10568/125759</u>

Notenbaert AMO; Douxchamps S; Villegas DM; Arango J; Paul BK; Burkart S; Rao I; Kettle CJ; Rudel T; Vázquez E; Teutscherova N; Chirinda N; Groot JCJ; Wironen M; Pulleman M; Louhaichi M; Hassan S; Oberson A; Nyawira SS; Pinares-Patino CS; Peters M. 2021. Tapping Into the Environmental Cobenefits of Improved Tropical Forages for an Agroecological Transformation of Livestock Production Systems. Frontiers in Sustainable Food Systems 5: 434. DOI: 10.3389/fsufs.2021.742842

ACKNOWLEDGEMENTS

The designations employed and the presentation of the material on the maps do not imply the expression of any opinion whatsoever concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.

This work was conducted as part of the CGIAR Initiatives Market Intelligence (MI), Sustainable Animal Productivity (SAP), Livestock and Climate (L&C), and Sustainable Intensification of Mixed Farming Systems (SI-MFS).

POSTER PREPARED FOR Tropentag 2024 September 11–13, 2024 Vienna (Austria)

This poster is licensed for use under the Creative Commons Attribution 4.0 International license (CC BY 4.0) 2024-08. Design: I.Rivas/CIAT.